文档智能与RAG技术在LLM中的应用评测

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,1000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本文介绍了阿里云在大型语言模型(LLM)中应用文档智能与检索增强生成(RAG)技术的解决方案,通过文档预处理、知识库构建、高效检索和生成模块,显著提升了LLM的知识获取和推理能力,尤其在法律、医疗等专业领域表现突出。

引言

随着人工智能技术的飞速发展,大型语言模型(LLM)在自然语言处理(NLP)领域取得了显著的进展。然而,LLM在处理特定领域或专业知识时,往往面临数据稀疏和知识更新不及时的问题。为了解决这些问题,文档智能(Document Intelligence)与检索增强生成(RAG)技术被引入到LLM中,以提升其知识获取和推理能力。本文将结合阿里云提供的解决方案,对文档智能与RAG技术在LLM中的应用进行详细评测。

1、文档智能与RAG技术概述

文档智能是指通过自然语言处理和机器学习技术,从文档中提取结构化信息的过程。RAG技术则是一种结合了检索和生成的方法,通过检索外部知识库来增强生成模型的输出。将这两种技术结合到LLM中,可以显著提升模型的知识获取能力和推理准确性。

2、阿里云解决方案概览

阿里云提供的解决方案“文档智能与RAG技术在LLM中的应用”(Document Mind RAG for LLM)旨在通过以下几个步骤实现:

  1. 文档预处理:对输入的文档进行清洗、分词和结构化处理,提取关键信息。
  2. 知识库构建:将处理后的文档信息存储到知识库中,形成结构化的知识图谱。
  3. 检索模块:设计高效的检索算法,从知识库中快速检索相关信息。
  4. 生成模块:结合检索到的信息,利用LLM生成高质量的文本输出。

3、技术实现细节

1. 文档预处理

文档预处理是整个流程的基础。阿里云采用了先进的NLP技术,如BERT(Bidirectional Encoder Representations from Transformers)和GPT(Generative Pre-trained Transformer),对文档进行深度解析。通过分词、命名实体识别(NER)和关系抽取等技术,提取出文档中的关键信息,如实体、关系和事件等。
image.png

文档预处理流程

2. 知识库构建

提取出的信息被存储到知识库中,形成结构化的知识图谱。知识库的构建采用了图数据库技术,如Neo4j,以高效存储和查询实体之间的关系。知识库的构建不仅提高了检索效率,还为后续的推理提供了丰富的背景知识。

3. 检索模块

检索模块是RAG技术的核心。阿里云采用了基于向量检索的技术,如FAISS(Facebook AI Similarity Search),通过计算文档向量与查询向量之间的相似度,快速检索出与查询相关的文档片段。检索模块的高效性直接影响到生成模块的输出质量。

4. 生成模块

生成模块结合了检索到的信息和LLM的生成能力。阿里云采用了GPT-3作为生成模型,通过微调使其适应特定领域的知识生成。生成模块不仅能够生成流畅的文本,还能结合检索到的信息,生成具有高度准确性和专业性的内容。

4、 方案优势

  1. 精准的文档解析能力

文档智能能够精准识别并解析包括Office文档(Word/Excel/PPT)、PDF、Html、图片等在内的主流文件类型。这一能力不仅提升了文档处理的效率,还保证了信息的准确性和完整性。通过电子解析+OCR/NLP的细粒度混合版融合方案,文档智能能够针对不同类型的文档实现最优化的解析效果。

  1. 高效的语义理解能力

在解析文档的基础上,文档智能还能够提取出文档层级树、样式信息以及版面信息,从而保留了文档的语义完整性。这一能力使得文档内容在转化为结构化数据时,不会丢失任何关键信息。同时,基于最新自研的技术GeoLayoutLM研发的层级树模型,可以高效地提取各种长度和类型文档的内部版面层级关系,进一步提升了语义理解的准确性。

  1. 强大的检索增强生成能力

结合RAG技术,该方案能够在知识库中快速召回与问题相关的信息,并通过语言模型进行智能问答。这一能力不仅提升了问答的准确性和效率,还使得企业能够充分利用已有的文档资源,构建出一个强大的知识库系统。

5、评测结果

通过对阿里云解决方案的实际应用,我们进行了多项评测,结果如下:

  1. 准确性:在处理特定领域的文档时,结合RAG技术的LLM在准确性上显著优于传统的LLM。特别是在法律、医疗等专业领域,生成的文本具有更高的专业性和准确性。
  2. 效率:检索模块的高效性使得整个流程在处理大规模文档时仍能保持较高的响应速度。知识库的构建和检索模块的优化,使得系统在处理复杂查询时表现出色。
  3. 可扩展性:阿里云的解决方案具有良好的可扩展性,能够轻松应对不同规模和类型的文档处理需求。通过简单的配置和调整,系统可以适应不同的应用场景。

6、 结论与建议

阿里云的文档智能与RAG结合方案在企业文档管理与知识处理领域展现了强大的潜力。其高效的文档解析、精准的语义提取和灵活的部署方式,使得各类企业都能受益于这一技术。

1. 未来展望

随着企业对数字化转型的重视,文档智能与RAG的结合将成为未来知识管理的重要趋势。阿里云的技术方案,为企业提供了一个高效、灵活的解决方案,值得各类企业积极探索和应用。

2. 建议

  • 企业应评估自身的文档处理需求,考虑引入文档智能与RAG结合的方案。
  • 在部署过程中,建议与阿里云的技术支持团队密切合作,以确保方案的顺利实施。
  • 定期对系统进行评估和优化,以提升文档解析和信息检索的效果。
目录
相关文章
|
3月前
|
SQL 人工智能 监控
SLS Copilot 实践:基于 SLS 灵活构建 LLM 应用的数据基础设施
本文将分享我们在构建 SLS SQL Copilot 过程中的工程实践,展示如何基于阿里云 SLS 打造一套完整的 LLM 应用数据基础设施。
684 56
|
5月前
|
人工智能 监控 数据可视化
BISHENG下一代企业AI应用的“全能型“LLM软件
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
12_机器翻译入门:多语言LLM应用
在全球化背景下,语言障碍一直是信息交流、商业合作和文化传播的重要阻碍。2025年,随着多语言大语言模型(LLM)技术的突破,机器翻译已经从简单的单词转换发展为能够理解上下文、处理复杂句式、适应文化差异的智能系统。本文将带您入门多语言LLM在机器翻译领域的应用,重点介绍使用mT5(多语言T5)模型实现英语到中文的翻译,并探讨文化适应等高级话题。
|
8月前
|
数据采集 算法 数据挖掘
CLIMB自举框架:基于语义聚类的迭代数据混合优化及其在LLM预训练中的应用
英伟达提出的CLIMB框架,是一种自动化优化大型语言模型(LLM)预训练数据混合的创新方法。通过语义嵌入与聚类技术,CLIMB能系统地发现、评估并优化数据混合策略,无需人工干预。该框架包含数据预处理、迭代自举及最优权重确定三大阶段,结合小型代理模型与性能预测器,高效搜索最佳数据比例。实验表明,基于CLIMB优化的数据混合训练的模型,在多项推理任务中显著超越现有方法,展现出卓越性能。此外,研究还构建了高质量的ClimbMix数据集,进一步验证了框架的有效性。
344 0
CLIMB自举框架:基于语义聚类的迭代数据混合优化及其在LLM预训练中的应用
|
2月前
|
机器学习/深度学习 自然语言处理 算法
48_动态架构模型:NAS在LLM中的应用
大型语言模型(LLM)在自然语言处理领域的突破性进展,很大程度上归功于其庞大的参数量和复杂的网络架构。然而,随着模型规模的不断增长,计算资源消耗、推理延迟和部署成本等问题日益凸显。如何在保持模型性能的同时,优化模型架构以提高效率,成为2025年大模型研究的核心方向之一。神经架构搜索(Neural Architecture Search, NAS)作为一种自动化的网络设计方法,正在为这一挑战提供创新性解决方案。本文将深入探讨NAS技术如何应用于LLM的架构优化,特别是在层数与维度调整方面的最新进展,并通过代码实现展示简单的NAS实验。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
15_批量处理文本:LLM在数据集上的应用
在大语言模型(LLM)的实际应用中,我们很少只处理单条文本。无论是数据分析、内容生成还是模型训练,都需要面对海量文本数据的处理需求。批量处理技术是连接LLM与实际应用场景的关键桥梁,它能够显著提升处理效率、降低计算成本,并实现更复杂的数据流水线设计。
|
9月前
|
人工智能 数据可视化 API
36.7K star!拖拽构建AI流程,这个开源LLM应用框架绝了!
`Flowise` 是一款革命性的低代码LLM应用构建工具,开发者通过可视化拖拽界面,就能快速搭建基于大语言模型的智能工作流。该项目在GitHub上线不到1年就斩获**36.7K星标**,被开发者誉为"AI时代的乐高积木"。
525 8
|
10月前
|
机器学习/深度学习 存储 人工智能
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
7419 80
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
|
8月前
|
人工智能 开发框架 搜索推荐
27.4K Star!这个LLM应用宝库让你秒变AI全栈高手,RAG和AI Agent一网打尽!
想要快速入门LLM应用开发?想要了解最新的RAG和AI Agent技术?这个收获27.4K Star的开源项目集合了当下最热门的LLM应用案例,从简单的PDF对话到复杂的多智能体系统应该有尽有。无论你是AI开发新手还是经验丰富的工程师,这里都能找到适合你的项目!
354 0
|
11月前
|
Linux Docker 异构计算
基于Dify +Ollama+ Qwen2 完成本地 LLM 大模型应用实战
尼恩,一位拥有40年经验的老架构师,通过其丰富的行业经验和深入的技术研究,为读者提供了一套系统化、全面化的LLM大模型学习圣经。这套学习资料不仅帮助许多从业者成功转型,还助力多位工程师获得了高薪工作机会。