基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序

简介: 本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。

1.算法运行效果图预览
(完整程序运行后无水印)
image.png

将FPGA的仿真结果导入到MATLAB中,分别得到MATLAB的结果和FPGA的结果:

image.png
image.png

2.算法运行软件版本
vivado2019.2

matlab2022a

3.部分程序
(完整版代码包含详细中文注释和操作步骤视频)
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2022/07/28 01:51:45
// Design Name:
// Module Name: test_image
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module test_image;
reg i_clk;

reg i_rst;

reg [7:0] Buffer1 [0:300000];
reg [7:0] Buffer2 [0:300000];
reg [7:0] Buffer3 [0:300000];
reg [7:0] II1;
reg [7:0] II2;
reg [7:0] II3;
wire [7:0]o_cfbw;
integer fids1,fids2,fids3,idx=0,dat1,dat2,dat3;

//D:\FPGA_Proj\FPGAtest\codepz
initial
begin
fids1 = $fopen("D:\code\Proj\1.bmp","rb");//调用3个图片
dat1 = $fread(Buffer1,fids1);
$fclose(fids1);
end
initial
begin
fids2 = $fopen("D:\code\Proj\2.bmp","rb");//调用3个图片
dat2 = $fread(Buffer2,fids2);
$fclose(fids2);
end
initial
begin
fids3 = $fopen("D:\code\Proj\3.bmp","rb");//调用3个图片
dat3 = $fread(Buffer3,fids3);
$fclose(fids3);
end

initial
begin
i_clk=1;
i_rst=1;

1000;

i_rst=0;
end

always #5 i_clk=~i_clk;

always@(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
II1<=8'd0;
II2<=8'd0;
II3<=8'd0;
idx<=0;
end
else begin
if(idx<=263145)
begin
II1<=Buffer1[idx];
II2<=Buffer2[idx];
II3<=Buffer2[idx];
end
else begin
II1<=8'd0;
II2<=8'd0;
II3<=8'd0;
end

    idx<=idx+1;
end

end

//调用合并模块
tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_I1 (II1),
.i_I2 (II2),
.i_I3 (II3),
.o_cfbw (o_cfbw)
);

endmodule
0X_038m

```

4.算法理论概述
运动目标检测是计算机视觉中的一个重要问题,它涉及到从连续的视频帧中识别出运动物体的过程。这项技术在许多领域都有着广泛的应用,如安防监控、自动驾驶、人机交互等。三帧差算法作为一种简单的运动目标检测方法,通过对连续三帧图像的像素值进行比较,来识别出运动区域。

   假设视频流中的连续三帧图像分别为It, It−1, It−2,其中t 表示当前时间点,t−1 和t−2 分别表示前一帧和前两帧。差分图像是通过计算相邻帧之间的像素值差异来获取的。对于三帧差算法而言,我们首先计算相邻两帧之间的差分图像,然后将这两个差分图像相加以获取最终的差分图像。具体步骤如下:

image.png

  在获取最终的差分图像后,我们可以通过设定阈值 T 来检测运动目标。如果某像素点在差分图像中的值超过阈值,则认为该像素点属于运动区域。

  设定阈值 T,如果某像素点(i,j) 在差分图像Dfinal 中的值大于T,则认为该像素点属于运动目标:

image.png

   基于三帧差算法的运动目标检测是一种简单而有效的技术,它通过计算连续三帧图像之间的差分来检测运动目标。虽然这种方法容易受到光照变化和摄像机抖动等因素的影响,但通过一些改进措施(如适应性阈值、高斯滤波和光照补偿等),可以显著提高检测的准确性和鲁棒性。
相关文章
|
19天前
|
算法 5G 数据安全/隐私保护
基于MIMO系统的PE-AltMin混合预编码算法matlab性能仿真
本文介绍了基于交替最小化(AltMin)算法的混合预编码技术在MIMO系统中的应用。通过Matlab 2022a仿真,展示了该算法在不同信噪比下的性能表现。核心程序实现了对预编码器和组合器的优化,有效降低了硬件复杂度,同时保持了接近全数字预编码的性能。仿真结果表明,该方法具有良好的鲁棒性和收敛性。
32 8
|
1月前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
1月前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
47 3
|
2月前
|
Python
基于python-django的matlab护照识别网站系统
基于python-django的matlab护照识别网站系统
19 0
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
224 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
141 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
109 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
7月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章