使用 MongoDB 构建 AI:Patronus 如何自动进行大语言模型评估来增强对生成式 AI 的信心

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介: 若需了解更多MongoDB Atlas相关内容,可前往:https://www.mongodb.com/zh-cn/atlas

大语言模型可能不可靠,这几乎算不上头条新闻。对于某些用例,这可能会带来不便。而对于其他行业,尤其是受监管行业,后果则要严重得多。于是,业内首个大语言模型自动评估平台 Patronus AI 应运而生。

Patronus AI 由 Meta AI 和 Meta Reality Labs 的机器学习专家创立,旨在增强企业对生成式 AI 应用程序的信心,在塑造值得信赖的 AI 生态方面处于领先地位。

Patronus 联合创始人兼首席技术官 Rebecca Qian 解释道:“我们的平台支持工程师在真实场景中对 LLM 性能进行评分和基准测试,生成对抗性测试用例,监控幻觉并检测 PII 及其他意外和不安全的行为。客户使用 Patronus AI 大规模检测 LLM 错误,从而安全、自信地部署 AI 产品。”

image.png

在最近发表并被广泛引用的基于 FinanceBench 问答 (QA) 评估套件研究中,Patronus 有了一个惊人的发现。研究人员发现,许多广泛使用的先进 LLM 经常出现幻觉,错误回答或拒绝回答金融分析师问题的比例高达 81%!尽管模型的上下文窗口已通过从外部向量存储中检索到的上下文得到了增强,但错误率仍然如此之高。

检索增强生成 (RAG)是为模型提供最新的、特定于领域上下文的一种常见方式,但应用程序所有者面临的一个关键问题是如何以可扩展的方式测试模型输出的可靠性。这时候,Patronus 的作用就凸显出来了。该公司采用生成式 AI 生态系统(包括模型提供商和框架以及向量存储和 RAG 解决方案)中的领先技术,提供托管评估服务、测试套件和对抗数据集。

“当我们评估形势以确定最佳合作伙伴时,我们看到了客户对 MongoDB Atlas[2] 的巨大需求,”Qian 说道。“通过我们的 Patronus RAG 评估 API,我们可以帮助客户验证他们基于 MongoDB Atlas 构建的 RAG 系统是否能持续提供优质、可靠的信息。”

若需了解更多检索增强生成(RAG)相关内容,可前往:
https://www.mongodb.com/zh-cn/resources/basics/artificial-intelligence/retrieval-augmented-generation
若需了解更多MongoDB Atlas相关内容,可前往:
https://www.mongodb.com/zh-cn/atlas
若需了解更多Atlas Vector Search相关内容,可前往:
https://www.mongodb.com/zh-cn/products/platform/atlas-vector-search

在其新发布的十分钟指南中,Patronus 向开发者演示了一个工作流,展示了如何评估基于 MongoDB Atlas 的检索系统。该指南的重点是对照 SEC 10-K 文件评估幻觉和回答的相关性,模拟金融分析师查询文件,以获得分析和见解的过程。该工作流由以下工具构建:

● LlamaIndex 数据框架,用于导入和切分源 PDF 文档
● Atlas Vector Search,用于存储、索引和查询切分后的元数据和嵌入
● Patronus,用于对模型响应进行评分

工作流如下图所示。

image.png

根据分析结果,开发者可以采取一些措施来提高 RAG 系统的性能,包括探索不同的索引、修改文档切分大小、重新设计提示,以及对嵌入模型本身进行微调(针对大多数特定领域的应用程序)。

正如 Qian 所说:“无论您采用哪种方法来调试和修复幻觉,一定要对 RAG 系统进行持续测试,以确保长期实施性能改进。当然,您可以反复使用 Patronus API 进行确认。”

相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
目录
打赏
0
0
0
0
234
分享
相关文章
36.7K star!拖拽构建AI流程,这个开源LLM应用框架绝了!
`Flowise` 是一款革命性的低代码LLM应用构建工具,开发者通过可视化拖拽界面,就能快速搭建基于大语言模型的智能工作流。该项目在GitHub上线不到1年就斩获**36.7K星标**,被开发者誉为"AI时代的乐高积木"。
AI Agent:构建以数据为中心的智能体
在过去一年里大模型领域主要有两大领域的热点,一个是 LLM,几乎每月速度革新,大家关心的是效果和成本。另一个是 AI Agent,大家尝试解决各个领域应用问题,大家关心的是场景和竞争力。下面我们重点分享一下 AI Agent 的趋势和实践。
Archon – 开源 AI 智能体框架,自主生成代码构建 AI 智能体
Archon 是一个开源的 AI 智能体框架,能够自主生成代码并优化智能体性能,支持多智能体协作、领域知识集成和文档爬取等功能,适用于企业、教育、智能家居等多个领域。
169 10
Archon – 开源 AI 智能体框架,自主生成代码构建 AI 智能体
构建企业AI的信任与信心基石:从认知到实践的全面升级
本文探讨企业在人工智能(AI)广泛应用背景下面临的信任与信心挑战,提出通过数据安全、技术透明度及技能认证构建信任体系。重点介绍生成式人工智能认证(GAI),其能助力企业培养AI人才,提升团队专业能力。文章还建议企业加强内部培训、外部合作与实战应用评估,全方位推动AI战略落地,为企业发展提供支持。
通过MongoDB Atlas 实现语义搜索与 RAG——迈向AI的搜索机制
MongoDB Atlas 的向量搜索功能为语义搜索和 RAG 提供了一个高效的数据库管理平台。在这个全新的应用场景下,Atlas 的向量检索能力支持开发者实现高效的知识检索和增强型生成应用,使其在智能客服、知识问答、个性化推荐等场景中大放异彩。结合生成式模型的 RAG 应用,MongoDB Atlas 提供了从数据存储到智能生成的完整解决方案,展现出其在现代应用中的巨大潜力。希望本文能够帮助大家更好地理解 MongoDB Atlas 的语义搜索功能和 RAG 的实际应用。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点
通过MongoDB Atlas 实现语义搜索与 RAG——迈向AI的搜索机制
20分钟上手DeepSeek开发:SpringBoot + Vue2快速构建AI对话系统
本文介绍如何使用Spring Boot3与Vue2快速构建基于DeepSeek的AI对话系统。系统具备实时流式交互、Markdown内容渲染、前端安全防护等功能,采用响应式架构提升性能。后端以Spring Boot为核心,结合WebFlux和Lombok开发;前端使用Vue2配合WebSocket实现双向通信,并通过DOMPurify保障安全性。项目支持中文语义优化,API延迟低,成本可控,适合个人及企业应用。跟随教程,轻松开启AI应用开发之旅!
|
12天前
|
微服务——MongoDB常用命令1——数据库操作
本节介绍了 MongoDB 中数据库的选择、创建与删除操作。使用 `use 数据库名称` 可选择或创建数据库,若数据库不存在则自动创建。通过 `show dbs` 或 `show databases` 查看所有可访问的数据库,用 `db` 命令查看当前数据库。注意,集合仅在插入数据后才会真正创建。数据库命名需遵循 UTF-8 格式,避免特殊字符,长度不超过 64 字节,且部分名称如 `admin`、`local` 和 `config` 为系统保留。删除数据库可通过 `db.dropDatabase()` 实现,主要用于移除已持久化的数据库。
35 0
|
12天前
|
从 MongoDB 到 时序数据库 TDengine,沃太能源实现 18 倍写入性能提升
沃太能源是国内领先储能设备生产厂商,数十万储能终端遍布世界各地。此前使用 MongoDB 存储时序数据,但随着设备测点增加,MongoDB 在存储效率、写入性能、查询性能等方面暴露出短板。经过对比,沃太能源选择了专业时序数据库 TDengine,生产效能显著提升:整体上,数据压缩率超 10 倍、写入性能提升 18 倍,查询在特定场景上也实现了数倍的提升。同时减少了技术架构复杂度,实现了零代码数据接入。本文将对 TDengine 在沃太能源的应用情况进行详解。
28 0
数据库数据恢复—MongoDB数据库迁移过程中丢失文件的数据恢复案例
某单位一台MongoDB数据库由于业务需求进行了数据迁移,数据库迁移后提示:“Windows无法启动MongoDB服务(位于 本地计算机 上)错误1067:进程意外终止。”
|
4月前
|
学习 MongoDB:打开强大的数据库技术大门
MongoDB 是一个基于分布式文件存储的文档数据库,由 C++ 编写,旨在为 Web 应用提供可扩展的高性能数据存储解决方案。它与 MySQL 类似,但使用文档结构而非表结构。核心概念包括:数据库(Database)、集合(Collection)、文档(Document)和字段(Field)。MongoDB 使用 BSON 格式存储数据,支持多种数据类型,如字符串、整数、数组等,并通过二进制编码实现高效存储和传输。BSON 文档结构类似 JSON,但更紧凑,适合网络传输。
102 15

数据库

+关注
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等