【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5

简介: 【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5

【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5

Note: 草稿状态,持续更新中,如果有感兴趣,欢迎关注。。。

0. 论文信息

@article{lecun1998gradient,

title={Gradient-based learning applied to document recognition},

author={LeCun, Yann and Bottou, L{'e}on and Bengio, Yoshua and Haffner, Patrick},

journal={Proceedings of the IEEE},

volume={86},

number={11},

pages={2278–2324},

year={1998},

publisher={Ieee}

}

基于梯度的学习在文档识别中的应用

LeNet-5 是一个经典的卷积神经网络CNN)架构,由 Yann LeCun 等人在 1998 年提出,主要用于手写数字识别任务,特别是在 MNIST 数据集上。

LeNet-5 的设计对后来的卷积神经网络研究产生了深远影响,该模型具有以下几个特点:

  1. 卷积层:LeNet-5 包含多个卷积层,每个卷积层后面通常会跟一个池化层(Pooling Layer),用于提取图像特征并降低特征图的空间维度。
  2. 池化层:在卷积层之后,LeNet-5 使用池化层来降低特征图的空间分辨率,减少计算量,并增加模型的抽象能力。
  3. 全连接层:在卷积和池化层之后,LeNet-5 包含几个全连接层,用于学习特征之间的复杂关系。
  4. 激活函数:LeNet-5 使用了 Sigmoid 激活函数,这是一种早期的非线性激活函数,用于引入非线性,使得网络可以学习复杂的模式。
  5. Dropout:尽管原始的 LeNet-5 并没有使用 Dropout,但后来的研究者在改进模型时加入了 Dropout 技术,以减少过拟合。
  6. 输出层:LeNet-5 的输出层通常使用 Softmax 激活函数,用于进行多分类任务,输出每个类别的概率。

虽然站在2024年看LeNet-5 的模型结构相对简单,但是时间回拨到1998年,彼时SVM这类算法为主的时代,LeNet-5的出现,不仅证明了卷积神经网络在图像识别任务中的有效性,而且为后续深度神经网络研究的发展带来重要启迪作用,使得我们有幸看到诸如 AlexNet、VGGNet、ResNet 等模型的不断推成出新。

2. 论文摘要

3. 研究背景

4. 算法模型

5. 实验效果

6. 代码实现

以MNIST手写字图像识别问题为例子,采用LeNet5模型进行分类,代码如下:

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Define the LeNet-5 model
class LeNet5(nn.Module):
    def __init__(self):
        super(LeNet5, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)  # 1 input image channel, 6 output channels, 5x5 kernel
        self.pool = nn.MaxPool2d(2, 2)  # pool with window 2x2, stride 2
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)  # 16*4*4 = 256
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 4 * 4)  # flatten the tensor
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
# # Initialize the network
# net = LeNet5()
# Initialize the network on GPU
net = LeNet5().to(device)
# Define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# Data loading
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=1000, shuffle=False)
# Train the network
for epoch in range(10):  # loop over the dataset multiple times
    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        # for cpu
        # inputs, labels = data
        # for gpu
        inputs, labels = data[0].to(device), data[1].to(device)
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if i % 2000 == 1999:  # print every 2000 mini-batches
            print(f'[{epoch + 1}, {i + 1}] loss: {running_loss / 2000:.3f}')
            running_loss = 0.0
print('Finished Training')
# Test the network on the test data
correct = 0
total = 0
with torch.no_grad():
    for data in test_loader:
        # # for cpu
        # images, labels = data
        # for gpu
        images, labels = data[0].to(device), data[1].to(device)
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
print(f'Accuracy of the network on the 10000 test images: {100 * correct / total:.2f}%')

注意:这里使用GPU做简单加速。如果没有GPU,可以关闭对应代码,替换为相应的CPU代码即可。

程序运行后结果如下:

可以看到,在测试数据上的准确率为98.33%!

7. 问题及优化

相关实践学习
在云上部署ChatGLM2-6B大模型(GPU版)
ChatGLM2-6B是由智谱AI及清华KEG实验室于2023年6月发布的中英双语对话开源大模型。通过本实验,可以学习如何配置AIGC开发环境,如何部署ChatGLM2-6B大模型。
相关文章
|
2月前
|
机器学习/深度学习 PyTorch TensorFlow
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
2月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
3月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
222 2
|
3月前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
413 11
|
3月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
3月前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
530 0
|
3月前
|
机器学习/深度学习 传感器 数据采集
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
240 0
|
4月前
|
机器学习/深度学习 数据采集 TensorFlow
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
170 0
|
5月前
|
机器学习/深度学习 人工智能 PyTorch
零基础入门CNN:聚AI卷积神经网络核心原理与工业级实战指南
卷积神经网络(CNN)通过局部感知和权值共享两大特性,成为计算机视觉的核心技术。本文详解CNN的卷积操作、架构设计、超参数调优及感受野计算,结合代码示例展示其在图像分类、目标检测等领域的应用价值。
301 7
|
6月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。

热门文章

最新文章