【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5

简介: 【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5

【深度学习】经典的深度学习模型-01 开山之作:CNN卷积神经网络LeNet-5

Note: 草稿状态,持续更新中,如果有感兴趣,欢迎关注。。。

0. 论文信息

@article{lecun1998gradient,

title={Gradient-based learning applied to document recognition},

author={LeCun, Yann and Bottou, L{'e}on and Bengio, Yoshua and Haffner, Patrick},

journal={Proceedings of the IEEE},

volume={86},

number={11},

pages={2278–2324},

year={1998},

publisher={Ieee}

}

基于梯度的学习在文档识别中的应用

LeNet-5 是一个经典的卷积神经网络CNN)架构,由 Yann LeCun 等人在 1998 年提出,主要用于手写数字识别任务,特别是在 MNIST 数据集上。

LeNet-5 的设计对后来的卷积神经网络研究产生了深远影响,该模型具有以下几个特点:

  1. 卷积层:LeNet-5 包含多个卷积层,每个卷积层后面通常会跟一个池化层(Pooling Layer),用于提取图像特征并降低特征图的空间维度。
  2. 池化层:在卷积层之后,LeNet-5 使用池化层来降低特征图的空间分辨率,减少计算量,并增加模型的抽象能力。
  3. 全连接层:在卷积和池化层之后,LeNet-5 包含几个全连接层,用于学习特征之间的复杂关系。
  4. 激活函数:LeNet-5 使用了 Sigmoid 激活函数,这是一种早期的非线性激活函数,用于引入非线性,使得网络可以学习复杂的模式。
  5. Dropout:尽管原始的 LeNet-5 并没有使用 Dropout,但后来的研究者在改进模型时加入了 Dropout 技术,以减少过拟合。
  6. 输出层:LeNet-5 的输出层通常使用 Softmax 激活函数,用于进行多分类任务,输出每个类别的概率。

虽然站在2024年看LeNet-5 的模型结构相对简单,但是时间回拨到1998年,彼时SVM这类算法为主的时代,LeNet-5的出现,不仅证明了卷积神经网络在图像识别任务中的有效性,而且为后续深度神经网络研究的发展带来重要启迪作用,使得我们有幸看到诸如 AlexNet、VGGNet、ResNet 等模型的不断推成出新。

2. 论文摘要

3. 研究背景

4. 算法模型

5. 实验效果

6. 代码实现

以MNIST手写字图像识别问题为例子,采用LeNet5模型进行分类,代码如下:

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Define the LeNet-5 model
class LeNet5(nn.Module):
    def __init__(self):
        super(LeNet5, self).__init__()
        self.conv1 = nn.Conv2d(1, 6, 5)  # 1 input image channel, 6 output channels, 5x5 kernel
        self.pool = nn.MaxPool2d(2, 2)  # pool with window 2x2, stride 2
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 4 * 4, 120)  # 16*4*4 = 256
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 4 * 4)  # flatten the tensor
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
# # Initialize the network
# net = LeNet5()
# Initialize the network on GPU
net = LeNet5().to(device)
# Define loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# Data loading
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=1000, shuffle=False)
# Train the network
for epoch in range(10):  # loop over the dataset multiple times
    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        # for cpu
        # inputs, labels = data
        # for gpu
        inputs, labels = data[0].to(device), data[1].to(device)
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if i % 2000 == 1999:  # print every 2000 mini-batches
            print(f'[{epoch + 1}, {i + 1}] loss: {running_loss / 2000:.3f}')
            running_loss = 0.0
print('Finished Training')
# Test the network on the test data
correct = 0
total = 0
with torch.no_grad():
    for data in test_loader:
        # # for cpu
        # images, labels = data
        # for gpu
        images, labels = data[0].to(device), data[1].to(device)
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()
print(f'Accuracy of the network on the 10000 test images: {100 * correct / total:.2f}%')

注意:这里使用GPU做简单加速。如果没有GPU,可以关闭对应代码,替换为相应的CPU代码即可。

程序运行后结果如下:

可以看到,在测试数据上的准确率为98.33%!

7. 问题及优化

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
7天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
44 5
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的Transformer模型
探索深度学习中的Transformer模型
16 1
|
9天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
25 2
|
8天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
28 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
8天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
43 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第7天】本文将深入探讨卷积神经网络(CNN)的基本原理,以及它如何在图像识别领域中大放异彩。我们将从CNN的核心组件出发,逐步解析其工作原理,并通过一个实际的代码示例,展示如何利用Python和深度学习框架实现一个简单的图像分类模型。文章旨在为初学者提供一个清晰的入门路径,同时为有经验的开发者提供一些深入理解的视角。
|
11天前
|
机器学习/深度学习 计算机视觉 网络架构
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
纵观近年的顶会论文和研究热点,我们不得不承认一个现实:CNN相关的研究论文正在减少,曾经的"主角"似乎正逐渐淡出研究者的视野。
44 11
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
|
10天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
25天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
1月前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
85 1

热门文章

最新文章