计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-05(上)

简介: 计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-05(上)

1. LLM-Augmented Symbolic Reinforcement Learning with Landmark-Based Task Decomposition

Authors: Alireza Kheirandish, Duo Xu, Faramarz Fekri

https://arxiv.org/abs/2410.01929

增强符号强化学习与基于地标的任务分解

摘要

本文提出了一种新的方法,通过使用给定的正负轨迹来识别子任务,以解决复杂的强化学习任务。我们假设状态由一阶谓词逻辑表示,并设计了一种新算法来识别子任务。然后,我们使用大型语言模型(LLM)生成一阶逻辑规则模板,以实现每个子任务。这些规则进一步通过归纳逻辑编程(ILP)基于强化学习的代理进行微调。通过实验,我们验证了算法在检测子任务方面的准确性,并研究了语言模型产生的常识规则的质量。实验表明,我们的方法可以生成解决子任务所需的规则,从而在对环境预定义的一阶逻辑谓词的假设更少的情况下解决复杂任务。

研究背景

在强化学习(RL)中,将复杂任务分解为更简单的子任务是关键技术之一。这种方法通过将艰巨的挑战分解为更小、更易实现的目标和清晰的路径,使复杂任务更易于管理。地标是完成任务所必需访问的特定状态,它们作为关键里程碑,有助于有效的决策制定和结构化、高效的解决问题策略。

问题与挑战

在复杂环境中,直接找到目标的轨迹并不明显,或者解决复杂任务所需的策略复杂,使得直接解决方案具有挑战性。此外,在稀疏且不可解释的奖励环境中,如何有效地识别地标和子任务是一个挑战。

如何解决

作者提出了一种算法,使用对比学习来检测潜在的地标状态,然后使用图搜索算法来识别每个子任务所需的必要谓词。此外,使用大型语言模型(LLM)生成规则模板,这些模板进一步通过归纳逻辑编程(ILP)基于RL代理进行微调。

图检索算法:

创新点

  1. 地标识别:使用对比学习和图搜索算法来识别地标,而不是依赖于奖励中心算法。
  2. 规则模板生成:使用LLM生成规则模板,而不是依赖于人类专家生成的规则模板。
  3. 减少对预定义谓词的依赖:通过LLM引导的规则生成,减少了对环境预定义一阶逻辑谓词的假设。

算法模型

  1. 对比学习:用于检测潜在的地标状态。
  2. 图搜索算法:用于识别每个子任务所需的必要谓词。
  3. LLM规则模板生成:使用LLM生成规则模板。
  4. ILP-RL代理:用于微调生成的规则模板。

实验效果

  • 实验环境:修改版的GetOut和Loot环境。
  • 重要数据
  • 在GetOut*环境中,4个子任务的平均奖励为22.86 ± 2.46。
  • 在GetOut环境中,4个子任务的平均奖励为22.84 ± 2.49。
  • 结论:算法在检测子任务方面准确且高效,LLM引导的规则生成方法减少了对预定义逻辑谓词的依赖,提供了更灵活和可扩展的解决方案。

推荐阅读指数

★★★★☆

推荐理由

这篇文章提出了一种创新的方法,通过结合LLM和符号RL来解决复杂的强化学习任务。这种方法不仅提高了子任务检测的准确性和效率,而且减少了对预定义逻辑谓词的依赖,为解决复杂任务提供了一种新的视角。

2. Lost-in-Distance: Impact of Contextual Proximity on LLM Performance in Graph Tasks

Authors: Hamed Firooz, Maziar Sanjabi, Wenlong Jiang, Xiaoling Zhai

https://arxiv.org/abs/2410.01985

“迷失在远距离”: 上下文邻近性对大型语言模型在图任务中性能的影响

摘要

尽管大型语言模型(LLMs)取得了显著的进步,但它们在检索和有效处理相关上下文数据方面存在盲点。我们展示了LLMs在处理复杂度超出“大海捞针”场景的图任务时,其性能受到上下文中相关信息邻近性的影响,这种现象我们称之为“迷失在远距离”。我们检验了两个基本的图任务:识别两个节点之间的共同连接和评估三个节点之间的相似性,并表明模型在这些任务中的表现在很大程度上取决于共同边的相对位置。我们评估了三个公开可用的LLMs(Llama-3-8B、Llama-3-70B和GPT-4),并使用各种图编码技术来表示LLM输入的图结构。我们提出了“迷失在远距离”现象的公式,并证明“迷失在远距离”和“迷失在中间”现象是独立发生的。结果表明,模型的准确性随着节点连接之间的距离增加而下降,下降幅度高达6倍,与图编码和模型大小无关。

研究背景

LLMs通过利用规模和基于注意力的架构,达到了前所未有的普遍性水平。这些模型在包括语言翻译、阅读理解和问答在内的多种任务中展现出卓越能力。此外,LLMs也越来越多地作为各种面向用户的机器学习和人工智能应用的基础模块,例如推荐系统、图相关任务和知识库等。


计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-05(下)+https://developer.aliyun.com/article/1628938

目录
打赏
0
0
0
0
16
分享
相关文章
基于 C# 深度优先搜索算法的局域网集中管理软件技术剖析
现代化办公环境中,局域网集中管理软件是保障企业网络高效运行、实现资源合理分配以及强化信息安全管控的核心工具。此类软件需应对复杂的网络拓扑结构、海量的设备信息及多样化的用户操作,而数据结构与算法正是支撑其强大功能的基石。本文将深入剖析深度优先搜索(Depth-First Search,DFS)算法,并结合 C# 语言特性,详细阐述其在局域网集中管理软件中的应用与实现。
61 3
生成式人工智能认证(GAI认证)与标准化进程协同发展及就业市场赋能研究
本文探讨生成式人工智能认证(GAI认证)在人工智能标准化进程中的重要性,分析其对就业市场的积极影响及未来发展趋势。GAI认证不仅是个人AI能力的权威认可,还推动行业标准化与技术创新。文章指出,随着技术融合加速和应用场景拓展,GAI认证标准需不断完善,以应对技术更新、数据安全等挑战,为AI健康发展贡献力量。
基于 C++ 语言的迪杰斯特拉算法在局域网计算机管理中的应用剖析
在局域网计算机管理中,迪杰斯特拉算法用于优化网络路径、分配资源和定位故障节点,确保高效稳定的网络环境。该算法通过计算最短路径,提升数据传输速率与稳定性,实现负载均衡并快速排除故障。C++代码示例展示了其在网络模拟中的应用,为企业信息化建设提供有力支持。
85 15
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
85 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
基于 Python 哈希表算法的局域网网络监控工具:实现高效数据管理的核心技术
在当下数字化办公的环境中,局域网网络监控工具已成为保障企业网络安全、确保其高效运行的核心手段。此类工具通过对网络数据的收集、分析与管理,赋予企业实时洞察网络活动的能力。而在其运行机制背后,数据结构与算法发挥着关键作用。本文聚焦于 PHP 语言中的哈希表算法,深入探究其在局域网网络监控工具中的应用方式及所具备的优势。
74 7
基于 Python 迪杰斯特拉算法的局域网计算机监控技术探究
信息技术高速演进的当下,局域网计算机监控对于保障企业网络安全、优化资源配置以及提升整体运行效能具有关键意义。通过实时监测网络状态、追踪计算机活动,企业得以及时察觉潜在风险并采取相应举措。在这一复杂的监控体系背后,数据结构与算法发挥着不可或缺的作用。本文将聚焦于迪杰斯特拉(Dijkstra)算法,深入探究其在局域网计算机监控中的应用,并借助 Python 代码示例予以详细阐释。
58 6
解析局域网内控制电脑机制:基于 Go 语言链表算法的隐秘通信技术探究
数字化办公与物联网蓬勃发展的时代背景下,局域网内计算机控制已成为提升工作效率、达成设备协同管理的重要途径。无论是企业远程办公时的设备统一调度,还是智能家居系统中多设备间的联动控制,高效的数据传输与管理机制均构成实现局域网内计算机控制功能的核心要素。本文将深入探究 Go 语言中的链表数据结构,剖析其在局域网内计算机控制过程中,如何达成数据的有序存储与高效传输,并通过完整的 Go 语言代码示例展示其应用流程。
36 0
Python下的毫秒级延迟RTSP|RTMP播放器技术探究和AI视觉算法对接
本文深入解析了基于Python实现的RTSP/RTMP播放器,探讨其代码结构、实现原理及优化策略。播放器通过大牛直播SDK提供的接口,支持低延迟播放,适用于实时监控、视频会议和智能分析等场景。文章详细介绍了播放控制、硬件解码、录像与截图功能,并分析了回调机制和UI设计。此外,还讨论了性能优化方法(如硬件加速、异步处理)和功能扩展(如音量调节、多格式支持)。针对AI视觉算法对接,文章提供了YUV/RGB数据处理示例,便于开发者在Python环境下进行算法集成。最终,播放器凭借低延迟、高兼容性和灵活扩展性,为实时交互场景提供了高效解决方案。
157 4
AI职场突围战:夸克应用+生成式人工智能认证,驱动“打工人”核心竞争力!
在AI浪潮推动下,生成式人工智能(GAI)成为职场必备工具。文中对比了夸克、豆包、DeepSeek和元宝四大AI应用,夸克以“超级入口”定位脱颖而出。同时,GAI认证为职场人士提供系统学习平台,与夸克结合助力职业发展。文章还探讨了职场人士如何通过加强学习、关注技术趋势及培养合规意识,在AI时代把握机遇。
人工智能应用领域有哪些
本文全面探讨了人工智能(AI)的应用领域和技术核心,涵盖医疗、交通、金融、教育、制造、零售等多个行业,并分析了AI技术的局限性及规避策略。同时,介绍了生成式人工智能认证项目的意义与展望。尽管AI发展面临数据依赖和算法可解释性等问题,但通过优化策略和经验验证,可推动其健康发展。未来,AI将在更多领域发挥重要作用,助力社会进步。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等