计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-30(上)

简介: 计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-30(上)

1. Proof Automation with Large Language Models

M Lu, B Delaware, T Zhang - arXiv preprint arXiv:2409.14274, 2024

使用大语言模型做自动化证明

概览:

本文研究了如何利用大型语言模型(LLMs)自动化地生成形式化证明。研究的主要成果是提出了一种名为PALM的新方法,该方法结合了LLMs和符号方法,通过生成-修复流程来自动化证明过程。PALM在包含超过10K定理的大型数据集上进行了评估,结果表明PALM在证明定理方面显著优于其他最先进的方法,成功证明了76.6%至180.4%更多的定理。此外,PALM证明了1270个超出现有方法能力的定理,并展示了其在不同LLMs上的泛化能力。

论文研究背景:

随着软件系统复杂性的增加,确保软件正确性变得至关重要。交互式定理证明器(如Coq、Isabelle和Lean)提供了一种强大的工具,用于形式化地保证软件的正确性。然而,使用这些工具需要大量的手动努力和专业知识。虽然LLMs已显示出在自动生成自然语言非形式化证明方面的潜力,但在生成交互式定理证明器中的正式证明方面效果不佳。

技术挑战:

LLMs在生成正式证明时面临挑战,包括正确识别证明的高层结构,但难以正确处理低层细节。此外,LLMs生成的证明脚本经常因为细节错误而被拒绝。

如何破局:

针对这些技术挑战,PALM方法首先使用LLMs生成初始证明,然后利用针对性的符号方法迭代修复低层问题。PALM依赖于四种修复机制,针对在我们的形式研究中识别的常见错误类型。如果修复机制失败,PALM使用回溯过程重新生成先前的证明步骤,以尝试修复错误。

技术应用:

PALM在CoqGym数据集上进行了广泛的评估,该数据集包含来自27个开源Coq项目的13,137个定理。实验结果表明,PALM在证明定理方面显著优于现有的方法,并且可以证明更复杂的定理。PALM的潜在应用包括辅助软件开发、操作系统、分布式系统和其他需要形式化验证的领域。

2. Investigating Layer Importance in Large Language Models

Y Zhang, Y Dong, K Kawaguchi - arXiv preprint arXiv:2409.14381, 2024

https://arxiv.org/pdf/2409.14381

探究大型语言模型中各层的重要性

摘要:

本研究旨在提高我们对大型语言模型(LLMs)的理解,特别是通过调查LLMs中各个层的重要性。我们提出了一种高效的抽样方法,使用Shapley值(一种在特征归因和数据评估中广泛使用的解释框架)来评估层的重要性。此外,我们进行了层消融实验,以评估排除特定层对性能的影响。研究发现某些早期层(称为基石层)对模型性能有显著贡献,移除其中一个基石层可能导致模型性能大幅下降,甚至降至随机猜测水平。相反,移除非基石层通常只会导致边缘性能变化。

研究背景:

大型语言模型(LLMs)在文本生成、翻译和理解任务上展现了前所未有的能力。然而,LLMs的不透明性阻碍了它们在安全关键场景中的部署,并限制了更好模型的发展。

问题与挑战:

尽管LLMs取得了成功,但它们仍存在诸如幻觉、偏见和不稳定的推理能力等问题。当神经网络出现错误或表现不佳时,确定模型中负责这些问题的具体部分是非常有价值的。因此,理解神经网络的内部工作机制和识别各个组成部分的作用是解决与LLMs相关挑战的关键。

如何解决:

我们通过将Shapley值框架扩展到LLMs的层,并采用高效的抽样方法来估计层的重要性。此外,我们还进行了层消融实验来观察特定层对性能的影响。

创新点:

  1. 提出了一种基于LLM层的接近度的高效抽样方法来估计层的Shapley值。
  2. 通过层Shapley值与层消融相结合,使用机制解释视角补充了传统的模型解释方法。
  3. 在LLMs中识别出基石层,这些层在许多任务中都有显著的贡献,并且其缺失会导致模型性能的崩溃。

算法模型:

  • Shapley值:用于量化每个层对整体模型性能的贡献。
  • 层消融实验:通过选择性地移除模型中的一个目标层,并观察对各种任务性能的影响。

实验效果:

  • Shapley值结果:显示了几个层(通常是早期层)在所有任务中对模型性能有显著贡献。
  • 层消融结果:移除一个基石层会导致模型性能立即下降到随机猜测水平,而移除其他层只会导致微小的性能下降。
  • 重要数据与结论:基石层通常位于模型的开始部分,而移除这些层通常会导致模型性能大幅下降。

推荐阅读指数:

8/10

推荐理由:

这篇论文为理解大型语言模型中不同层的作用提供了新的视角,特别是通过引入Shapley值和层消融实验来揭示基石层的重要性。这对于希望优化LLMs架构和提高模型解释能力的研究人员来说是非常有价值的。

3. The Impact of Large Language Models in Academia: from Writing to Speaking

M Geng, C Chen, Y Wu, D Chen, Y Wan, P Zhou - arXiv preprint arXiv:2409.13686, 2024

https://arxiv.org/pdf/2409.13686

文章标题翻译:

大型语言模型在学术界的影响:从写作到演讲

摘要:

大型语言模型(LLMs)正在对人类社会产生日益增长的影响,特别是在文本信息方面。基于来自机器学习会议的30000多篇论文和1000多个演讲,我们调查并比较了写作和演讲中使用的词汇,这是首次大规模研究LLMs如何影响同一组人的两种主要语言交流和表达方式。我们的实证结果表明,诸如“significant”这样的LLM风格词汇在摘要和口头演讲中的使用频率更高。对口语的影响开始显现,并可能在未来增长,这提醒我们要注意LLMs对人类社会的潜在影响和连锁效应。

研究背景:

LLMs的快速发展和普及使越来越多的研究者关注到LLMs对社会的影响。本文聚焦于LLMs在学术界的影响,特别是在写作和演讲方面。

问题与挑战:

尽管LLMs在学术写作中使用和影响力的快速增长已被证实,但很少有研究探讨LLMs在写作之外的影响。此外,对于写作和演讲如何受到影响的相似性和差异性,尤其是对于同一群人,尚未有研究进行探索。

如何解决:

通过分析最近机器学习会议的论文和演讲,我们试图填补这一空白。我们还希望引起对LLMs潜在影响的关注,即那些没有直接使用LLMs生成内容但通过接触此类内容而受到影响的人。

创新点:

  • 首次对LLMs对同一组人在写作和演讲中的影响进行了量化估计。
  • 通过比较不同会议的论文和演讲中的词汇使用,揭示了LLMs对学术写作和口语的潜在影响。

算法模型:

  • 异常检测:通过构建控制组来分析词汇频率的变化,以确定目标词汇频率的变化是否异常。
  • LLM模拟和影响估计:通过比较LLM处理前后的文本,对LLM的影响进行可靠估计。

实验效果:

  • 词汇频率分析:发现某些词汇在2022年后的学术会议论文摘要和演讲中的使用频率显著增加。
  • 频率比分布:通过与控制组比较,发现LLM风格词汇的使用频率远高于平均水平。
  • LLM模拟:通过GPT-3.5处理后的摘要中,这些词汇的使用频率显著增加。
  • LLM影响估计:2024年会议摘要中的LLM影响显著增加,演讲中的影响虽然增加但不如摘要显著。


计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-30(下)+https://developer.aliyun.com/article/1628922

目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-19
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-19
61 3
|
2月前
|
存储 人工智能 算法
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-18
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-18
49 0
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
33 0
|
20天前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
26 0
|
11天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建
|
6天前
|
数据采集 人工智能 移动开发
盘点人工智能在医疗诊断领域的应用
人工智能在医疗诊断领域的应用广泛,包括医学影像诊断、疾病预测与风险评估、病理诊断、药物研发、医疗机器人、远程医疗诊断和智能辅助诊断系统等。这些应用提高了诊断的准确性和效率,改善了患者的治疗效果和生活质量。然而,数据质量和安全性、AI系统的透明度等问题仍需关注和解决。
100 10
|
13天前
|
机器学习/深度学习 人工智能 算法
探索人工智能在医疗诊断中的应用
本文深入探讨了人工智能(AI)技术在医疗诊断领域的革新性应用,通过分析AI如何助力提高诊断准确性、效率以及个性化治疗方案的制定,揭示了AI技术为现代医学带来的巨大潜力和挑战。文章还展望了AI在未来医疗中的发展趋势,强调了跨学科合作的重要性。 ###
49 9
|
16天前
|
机器学习/深度学习 数据采集 人工智能
深度探索:人工智能在医疗影像诊断中的应用与挑战####
本文旨在深入剖析人工智能(AI)技术在医疗影像诊断领域的最新进展、核心优势、面临的挑战及未来发展趋势。通过综合分析当前AI算法在提高诊断准确性、效率及可解释性方面的贡献,结合具体案例,揭示其在临床实践中的实际价值与潜在局限。文章还展望了AI如何与其他先进技术融合,以推动医疗影像学迈向更高层次的智能化时代。 ####
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
探索未来编程:Python在人工智能领域的深度应用与前景###
本文将深入探讨Python语言在人工智能(AI)领域的广泛应用,从基础原理到前沿实践,揭示其如何成为推动AI技术创新的关键力量。通过分析Python的简洁性、灵活性以及丰富的库支持,展现其在机器学习、深度学习、自然语言处理等子领域的卓越贡献,并展望Python在未来AI发展中的核心地位与潜在变革。 ###
|
19天前
|
机器学习/深度学习 数据采集 人工智能
探索人工智能在医疗诊断中的应用与挑战
随着人工智能技术的飞速发展,其在医疗领域的应用日益广泛,尤其是在疾病诊断方面展现出巨大的潜力。本文将深入探讨AI技术在医疗诊断中的应用现状、面临的挑战以及未来的发展趋势,旨在为相关领域的研究者和从业者提供参考和启示。
41 2
下一篇
DataWorks