计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-28(中)

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: 计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-28(中)

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-28(上)+https://developer.aliyun.com/article/1628908


4. SEAL: Suite for Evaluating API-use of LLMs

Authors: Woojeong Kim, Ashish Jagmohan, Aditya Vempaty

https://arxiv.org/abs/2409.15523

SEAL:用于评估大型语言模型API使用的工具套件

摘要

大型语言模型(LLMs)在处理需要实时访问外部APIs的任务时存在局限性。虽然已有一些基准测试(如ToolBench和APIGen)用于评估LLMs的API使用能力,但它们通常存在缺乏泛化能力、有限的多步推理覆盖以及由于实时API波动导致的不稳定等问题。本文介绍了SEAL,这是一个端到端的测试平台,用于评估LLMs在现实世界API使用中的表现。SEAL标准化现有基准,集成了用于测试API检索和规划的代理系统,并通过引入GPT-4驱动的API模拟器和缓存来解决实时API的不稳定性问题。

研究背景

LLMs在许多语言任务中表现出色,但在需要实时访问特定信息(如当前事件、计算或网络搜索)的任务中面临限制。工具如计算器、代码执行和浏览扩展了LLMs的能力,使它们能够执行专业任务并获取最新知识,动态适应用户需求。

问题与挑战

现有的API使用基准测试存在一些关键问题,包括泛化能力不足、多步推理查询覆盖不足以及由于实时API服务的变动性导致的基准质量不稳定。

创新点

  • 提出了SEAL,一个全面的测试平台,用于评估LLMs在工具使用,特别是多样化的现实世界APIs中的表现。
  • SEAL通过标准化现有基准并整合基于AutoGen框架的代理系统,提供了一个健壮的评估流程。
  • 为了解决实时API的不稳定性,开发了一个由GPT-4驱动的API模拟器,并引入了缓存机制来实现更确定性的评价。

算法模型

SEAL基于AutoGen框架构建了一个灵活的代理系统,允许用户根据需求轻松集成和测试不同的代理。SEAL的架构包括API检索器、API执行器、API执行管理器和API模拟器。

实验效果

  • 数据: 使用ToolBench和APIGen基准进行评估。
  • 结论: 随着API池的扩大,API检索和调用的准确性有所下降,但最终响应的通过率变化不大。这表明随着API数量的增加,任务变得更加具有挑战性。

推荐阅读指数:

★★★★☆

  • 推荐理由: SEAL为评估LLMs在现实世界API交互中的性能提供了一个全面和标准化的框架。

5. Qualitative Insights Tool (QualIT): LLM Enhanced Topic Modeling

Authors: Satya Kapoor, Alex Gil, Sreyoshi Bhaduri, Anshul Mittal, Rutu Mulkar

https://arxiv.org/abs/2409.15626

定性洞察工具(QualIT):大型语言模型增强的主题建模

摘要

主题建模是一种广泛用于从大型文本语料库中挖掘主题结构的技术。然而,大多数主题建模方法(例如潜在狄利克雷分配(LDA))难以捕捉到准确建模复杂叙述所需的细微语义和上下文理解。最近的进步包括像BERTopic这样的方法,它显著提高了主题一致性,从而为基准测试建立了新的标准。在本文中,我们提出了一种新的方法,Qualitative Insights Tool (QualIT),它将大型语言模型(LLMs)与现有的基于聚类的主题建模方法整合。我们的方法利用LLMs的深度上下文理解和强大的语言生成能力,通过聚类丰富了主题建模过程。我们在大量新闻文章的语料库上评估了我们的方法,并展示了与基线主题建模技术相比,在主题一致性和主题多样性方面的显著改进。

研究背景

主题建模是自然语言处理(NLP)中用于从非结构化文本数据(如社交媒体帖子、新闻文章或客户反馈)中提取潜在主题结构的技术。传统的主题建模技术(例如LDA)存在一些局限性,例如单词袋模型的局限性和必须指定聚类数量,它们还依赖于预定义的规则和模式,难以捕捉自然语言中固有的上下文细微差别和歧义。

问题与挑战

现有的基于聚类的主题建模方法(如BERTopic)存在局限性,例如单词表示过载或每篇文本只能生成一个主题。此外,这些方法可能需要领域特定的知识或微调才能达到可接受的性能。

创新点

  • 提出了QualIT,一种将预训练的LLMs与聚类技术整合的新方法,以系统地解决两种方法的局限性,并从自由文本数据中生成更细致和可解释的主题表示。
  • 结合了LLMs的自然语言理解和聚类方法的组织和总结数据的能力,可以革新主题建模,提供强大而富有洞察力的方法来分析大规模文本响应。

算法模型

QualIT包括多个步骤来生成主题,然后用于确定文档的子主题。三个关键步骤是:

  1. 关键短语提取:使用LLM提取代表各个文档的关键短语。
  2. 幻觉检查:计算每个短语的一致性得分,以确保提取的关键短语的可靠性。
  3. 聚类:使用K-Means聚类算法对关键短语进行分组,每组代表具有相似语义内容的文档集合。

实验效果

  • 数据: 使用了包含20,000篇新闻文章的20 NewsGroups数据集。
  • 结论: QualIT在主题一致性和主题多样性方面均优于LDA和BERTopic。在20个ground-truth主题上,QualIT达到了70%的主题一致性(基准模型分别为65%和57%)和95.5%的主题多样性(基准模型分别为85%和72%)。

推荐阅读指数:

★★★★☆

  • 推荐理由: QualIT通过结合LLMs和聚类技术,提供了一种强大的新方法来分析和理解大规模文本数据中的主题。这项工作为文本分析、主题建模和定性研究领域带来了新的视角和工具,对于希望利用LLMs进行深入文本分析的研究者和实践者来说,这篇文章提供了有价值的见解和方法。

6. M^2PT: Multimodal Prompt Tuning for Zero-shot Instruction Learning

Authors: Taowen Wang, Yiyang Liu, James Chenhao Liang, junhan zhao, Yiming Cui,

Yuning Mao, Shaoliang Nie, Jiahao Liu, Fuli Feng, Zenglin Xu, Cheng Han, Lifu

Huang, Qifan Wang, Dongfang Liu

https://arxiv.org/abs/2409.15657

M2PT:用于零样本指令学习的多模态提示调整

摘要

本文介绍了一种新的多模态提示调整方法(M2PT),用于对多模态大型语言模型(MLLMs)进行高效的指令调整。M2PT通过在微调过程中将视觉和文本提示分别集成到视觉编码器和语言处理器中,促进了跨模态特征的提取和对齐。在多种多模态评估数据集上的实验结果表明,M2PT与几种最新技术基线相比具有更优越的性能。一系列详尽的消融研究验证了我们的提示设计和方法的有效性。

创新点

  • 多模态提示调整:首次提出将视觉和文本提示结合用于微调,以提高模型对多模态任务的适应能力。
  • 跨模态交互:通过在不同模态的提示之间设计交互,增强了模型对多模态信息的理解和处理能力。
  • 参数高效:M2PT仅调整模型的极小部分参数,大幅减少了训练成本,同时保持了优越的性能。

算法模型

M2PT模型的核心在于三个方面的创新设计:

  1. 视觉提示(Visual Prompt):在视觉编码器的每一层中嵌入可学习的参数(软提示),以更好地捕捉视觉输入的语义内容。
  2. 文本提示(Textual Prompt):在语言模型(LLM)中引入文本提示,以捕捉文本模式并影响LLM内部的表示。
  3. 跨模态交互层:引入一个可调的交互层,以增强视觉编码器提取的特征与文本表示之间的对齐。

实验效果

  • 准确率:在多个数据集上,M2PT在少样本学习任务中的表现超越了包括LoRA、PTUM和VPT在内的多个参数高效微调方法。
  • 结论:M2PT在零样本指令学习任务中展现了强大的性能,同时大幅度减少了参数调整的数量,实现了计算效率和整体效果的平衡。

推荐阅读指数:★★★★☆

推荐理由:M2PT通过创新的多模态提示调整策略,在保持性能的同时显著减少了参数数量,对于资源受限的应用场景具有重要意义。


计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-28(下)+https://developer.aliyun.com/article/1628910

目录
打赏
0
0
0
0
16
分享
相关文章
人工智能技术的探讨
人工智能的概念,人工智能的发展,人工智能的各种学派,人工智能的应用领域
49 4
生成式人工智能认证(GAI认证)与标准化进程协同发展及就业市场赋能研究
本文探讨生成式人工智能认证(GAI认证)在人工智能标准化进程中的重要性,分析其对就业市场的积极影响及未来发展趋势。GAI认证不仅是个人AI能力的权威认可,还推动行业标准化与技术创新。文章指出,随着技术融合加速和应用场景拓展,GAI认证标准需不断完善,以应对技术更新、数据安全等挑战,为AI健康发展贡献力量。
推动人工智能技术和产业变革,啥是核心驱动力?生成式人工智能认证(GAI认证)揭秘答案
人工智能(AI)正以前所未有的速度重塑世界,其发展离不开领军人才与创新生态的支持。文章探讨了AI领军人才的核心特质及培养路径,强调构建产学研深度融合的创新生态,并通过教育变革与GAI认证提升全民AI素养,为技术与产业变革提供持续动力。这不仅是推动社会高质量发展的关键,也为个人与企业带来了更多机遇。
生成式人工智能的价值回归:重塑技术、社会与个体的发展轨迹
生成式人工智能(Generative AI)正以前所未有的速度重塑社会面貌。它从单一决策工具转变为创造性生产力引擎,推动知识生产、艺术创作与科学研究的发展。同时,其广泛应用引发社会生产力和生产关系的深刻变革,带来就业结构变化与社会公平挑战。此外,生成式AI还面临伦理法律问题,如透明性、责任归属及知识产权等。培生公司推出的生成式AI认证项目,旨在培养专业人才,促进技术与人文融合,助力技术可持续发展。总体而言,生成式AI正从工具属性向赋能属性升华,成为推动社会进步的新引擎。
MCP与A2A协议比较:人工智能系统互联与协作的技术基础架构
本文深入解析了人工智能领域的两项关键基础设施协议:模型上下文协议(MCP)与代理对代理协议(A2A)。MCP由Anthropic开发,专注于标准化AI模型与外部工具和数据源的连接,降低系统集成复杂度;A2A由Google发布,旨在实现不同AI代理间的跨平台协作。两者虽有相似之处,但在设计目标与应用场景上互为补充。文章通过具体示例分析了两种协议的技术差异及适用场景,并探讨了其在企业工作流自动化、医疗信息系统和软件工程中的应用。最后,文章强调了整合MCP与A2A构建协同AI系统架构的重要性,为未来AI技术生态系统的演进提供了方向。
283 4
基于 PHP 语言的滑动窗口频率统计算法在公司局域网监控电脑日志分析中的应用研究
在当代企业网络架构中,公司局域网监控电脑系统需实时处理海量终端设备产生的连接日志。每台设备平均每分钟生成 3 至 5 条网络请求记录,这对监控系统的数据处理能力提出了极高要求。传统关系型数据库在应对这种高频写入场景时,性能往往难以令人满意。故而,引入特定的内存数据结构与优化算法成为必然选择。
32 3
人工智能技术对未来就业的影响
人工智能大模型技术正在重塑全球就业市场,但其核心是"增强"而非"取代"人类工作。虽然AI在数据处理、模式识别等标准化任务上表现出色,但在创造力、情感交互和复杂决策等人类专属领域仍存在明显局限。各行业呈现差异化转型:IT领域人机协同编程成为常态,金融业基础分析岗位减少但复合型人才需求激增,医疗行业AI辅助诊断普及但治疗决策仍依赖医生,制造业工人转向技术管理,创意产业中人类聚焦高端设计。未来就业市场将形成人机协作新生态,要求个人培养创造力、情商等AI难以替代的核心能力,企业重构工作流程。AI时代将推动人类向更高价值的认知活动跃升,实现人机优势互补的协同发展。
498 2
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等