【实战指南】用最小堆实现通用的高效定时器组件

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
Serverless 应用引擎免费试用套餐包,4320000 CU,有效期3个月
性能测试 PTS,5000VUM额度
简介: 本文介绍了如何使用最小堆实现高效的定时器组件,以解决Linux应用开发中定时器资源有限的问题。文章详细描述了最小堆方式的实现原理,包括系统定时器、定时器任务和定时器任务管理三个类的设计与源码实现。测试结果显示,该方法能够准确触发定时任务,有效利用系统资源。总结部分强调了使用最小堆的优势,以及通过抽象类实现清晰的业务逻辑。

用最小堆实现通用的高效定时器组件

开篇

  在程序开发过程中,定时器会经常被使用到。而在Linux应用开发中,系统定时器资源有限,进程可创建的定时器数量会受到系统限制。假如随便滥用定时器,会导致定时器资源不足,其他模块便无法申请到定时器资源。

  如上,假如同一进程中多个模块,需要同时申请不同周期定时器,就会导致模块创建定时器失败。

解决方案

  为解决定时器资源紧缺的问题,通常有以下几种方案:

  • 最小堆方式
    ① 首先创建一个系统定时器,设置为一次性触发。
    ② 其次基于二叉堆数据结构,将每个定时任务按照时触发时间戳先后顺序依次排列。
    ③ 每次取堆顶定时器任务时间戳,计算出触发时间,启动并更新系统定时器触发时间。
    ④ 定时器触发后,检查堆顶部的定时任务是否超时,超时触发对应事件,将定时器任务移除堆顶,重复③。(若定时任务为周期任务,则将其按照下次触发时间戳插入至二叉堆)
  • 时间轮方式
    ① 首先创建一个系统定时器,设置为周期性触发,周期为多个定时任务可共用的最小颗粒度。
    ② 定义环形数组,将时间划分为多个槽,每个槽放多个定时任务。
    ③ 定时器按照周期触发,触发后遍历每个槽的定时任务,并触发对应事件。

两者相比,各有优劣。最小堆方式精度更高,时间轮方式则胜在效率。在定时任务数量不庞大的情况下,最小堆方式更合适。本篇主要介绍最小堆的实现。

类图

  通过对定时器功能的理解,可以将其抽象为三个类:系统定时器,定时器任务,定时器任务管理。其类图如下:

定时器管理组件

  • 系统定时器(SystemTimer)
    负责封装Linux 定时器接口,向外提供系统定时器的使用接口。主要包含如下功能:
    ① 创建定时器
    ② 启动定时器
    ③ 停止定时器
    ④ 销毁定时器资源
  • 定时器任务(Timer)
    负责缓存定时任务属性的数据结构。主要包含如下数据:
    ① 触发时间间隔
    ② 下次触发时间戳
    ② 触发次数
    ③ 已触发次数计数
    ④ 定时器触发响应事件
    ⑤ 预定定时器的模块ID
  • 定时器任务管理(TimerManager)
    负责持有系统定时器和定时任务的管理。主要包含如下功能:
    ① 初始化、启动、结束、销毁系统定时器
    ② 接收和缓存定时任务预约事件
    ③ 维护定时任务容器,按照定时任务容器时间序更新系统定时器触发时间

源码实现

编程环境

  1. 编译环境: Linux环境
  2. 语言: C++语言

接口定义

  • 系统定时器(SystemTimer)
class SprSystemTimer : public SprObserver
{
public:
    SprSystemTimer(ModuleIDType id, const std::string& name, std::shared_ptr<SprMediatorProxy> mediatorPtr);
    ~SprSystemTimer();
    SprSystemTimer(const SprSystemTimer&) = delete;
    SprSystemTimer& operator=(const SprSystemTimer&) = delete;
    SprSystemTimer(SprSystemTimer&&) = delete;
    SprSystemTimer& operator=(SprSystemTimer&&) = delete;
    int ProcessMsg(const SprMsg& msg);
    int Init();
    int InitTimer();
    int StartTimer(uint32_t intervalInMilliSec);
    int StopTimer();
    int DestoryTimer();
private:
    bool mTimerRunning;
    int  mTimerFd;
};
  • 定时器任务(Timer)
class SprTimer
{
public:
    SprTimer(uint32_t moduleId, uint32_t msgId, uint32_t repeatTimes, uint32_t delayInMilliSec, uint32_t intervalInMilliSec);
    SprTimer(const SprTimer& timer);
    ~SprTimer();
    bool operator < (const SprTimer& t) const;
    bool IsExpired() const;
    uint32_t GetTick() const;
    uint32_t GetModuleId() const { return mModuleId; }
    uint32_t GetMsgId() const { return mMsgId; }
    uint32_t GetIntervalInMilliSec() const { return mIntervalInMilliSec; }
    uint32_t GetExpired() const { return mExpired; }
    uint32_t GetRepeatTimes() const { return mRepeatTimes; }
    uint32_t GetRepeatCount() const { return mRepeatCount; }
    void SetExpired(uint32_t expired) { mExpired = expired; }
    void RepeatCount() const { mRepeatCount++; }
private:
    uint32_t mModuleId;
    uint32_t mMsgId;
    uint32_t mIntervalInMilliSec;
    uint32_t mExpired;
    uint32_t mRepeatTimes;
    mutable uint32_t mRepeatCount;
};
  • 定时器任务管理(TimerManager)
class SprTimerManager : public SprObserver
{
public:
    virtual ~SprTimerManager();
    int Init();
    static SprTimerManager* GetInstance(ModuleIDType id, const std::string& name, std::shared_ptr<SprMediatorProxy> mediatorPtr, std::shared_ptr<SprSystemTimer> systemTimerPtr);
private:
    SprTimerManager(ModuleIDType id, const std::string& name, std::shared_ptr<SprMediatorProxy> mediatorPtr, std::shared_ptr<SprSystemTimer> systemTimerPtr);
    int DeInit();
    int InitSystemTimer();
    int ProcessMsg(const SprMsg& msg) override;
    int PrintRealTime();
    // --------------------------------------------------------------------------------------------
    // - Module's timer book manager functions
    // --------------------------------------------------------------------------------------------
    int AddTimer(uint32_t moduleId, uint32_t msgId, uint32_t repeatTimes, int32_t delayInMilliSec, int32_t intervalInMilliSec);
    int AddTimer(const SprTimer& timer);
    int DelTimer(const SprTimer& timer);
    int UpdateTimer();
    int CheckTimer();
    uint32_t NextExpireTimes();
    // --------------------------------------------------------------------------------------------
    // - Message handle functions
    // --------------------------------------------------------------------------------------------
    void MsgRespondStartSystemTimer(const SprMsg &msg);
    void MsgRespondStopSystemTimer(const SprMsg &msg);
    void MsgRespondAddTimer(const SprMsg &msg);
    void MsgRespondDelTimer(const SprMsg &msg);
    void MsgRespondSystemTimerNotify(const SprMsg &msg);
    void MsgRespondClearTimersForExitComponent(const SprMsg &msg);
private:
    bool mEnable;                                       // Component init status
    std::set<SprTimer> mTimers;                         // sort by SprTimer.mExpired from smallest to largest
    std::shared_ptr<SprSystemTimer> mSystemTimerPtr;    // SysTimer object
};

TimerManager

中存储定时任务的容器用的std::set<Timer>,可以自定义按照时间戳从小到大排序,就不用自己实现二叉堆结构了。

如下是TimerManager中定时器触发的业务逻辑代码:

① 定时器触发后,从头遍历任务容器。

② 若当前任务已超时且任务未失效,通知定时器触发事件。将当前任务缓存至失效容器,若为重复定时器,更新时间戳,再次插入任务容器。

③ 若当前任务未到期(说明后续任务都未到期),退出容器遍历。与②互斥。

④ 从任务容器中,删除②中缓存的失效容器

⑤ 当前任务容器若为空,停止系统定时器。

void SprTimerManager::MsgRespondSystemTimerNotify(const SprMsg &msg)
{
    set<SprTimer> deleteTimers;
    // loop: Execute the triggered timers, timers are sorted by Expired value from smallest to largest
    for (auto it = mTimers.begin(); it != mTimers.end(); ++it) {
        if (it->IsExpired()) {
            if (it->GetRepeatTimes() == 0 || (it->GetRepeatCount() + 1) < it->GetRepeatTimes()) {
                SprTimer t(*it);
                // loop: update timer valid expired time
                uint32_t tmpExpired = t.GetExpired();
                do {
                    tmpExpired += t.GetIntervalInMilliSec();
                    t.RepeatCount();
                } while (tmpExpired < it->GetTick());
                if (it->GetRepeatTimes() == 0 || (it->GetRepeatCount() + 1) < it->GetRepeatTimes()) {
                    t.SetExpired(tmpExpired);
                    AddTimer(t);
                }
            }
            // Notify expired timer event to the book component
            SprMsg msg(it->GetModuleId(), it->GetMsgId());
            NotifyObserver(msg);
            it->RepeatCount();
            deleteTimers.insert(*it);
        } else {
            break;
        }
    }
    // Delete expired timers
    for (const auto& timer : deleteTimers) {
        DelTimer(timer);
    }
    // Set next system timer
    uint32_t msgId = mTimers.empty() ? SIG_ID_TIMER_STOP_SYSTEM_TIMER : SIG_ID_TIMER_START_SYSTEM_TIMER;
    SprMsg sysMsg(msgId);
    SendMsg(sysMsg);
    // SPR_LOGD("Current total timers size = %d\n", (int)mTimers.size());
}

测试

测试一个2s的定时器:

56 DebugCore D: msg id: SIG_ID_DEBUG_TIMER_TEST_2S 2024-03-03 19:26:16.586
56 DebugCore D: msg id: SIG_ID_DEBUG_TIMER_TEST_2S 2024-03-03 19:26:18.586
56 DebugCore D: msg id: SIG_ID_DEBUG_TIMER_TEST_2S 2024-03-03 19:26:20.586
56 DebugCore D: msg id: SIG_ID_DEBUG_TIMER_TEST_2S 2024-03-03 19:26:22.585

总结

  • 对于定时器容器,本篇用到了STL接口的std::set<Timer>容器,通过重载Timer运算符<,实现按照时间戳(mExpired)从小到大排序。
  • 将定时器任务抽象处三个类,各自负责自己的业务,逻辑上更加清晰明了。
  • 使用一个系统定时器资源,完成所有定时任务的响应。实现基础功能的同时,降低对系统定时资源的消耗。
相关文章
|
11天前
|
存储 C++ UED
【实战指南】4步实现C++插件化编程,轻松实现功能定制与扩展
本文介绍了如何通过四步实现C++插件化编程,实现功能定制与扩展。主要内容包括引言、概述、需求分析、设计方案、详细设计、验证和总结。通过动态加载功能模块,实现软件的高度灵活性和可扩展性,支持快速定制和市场变化响应。具体步骤涉及配置文件构建、模块编译、动态库入口实现和主程序加载。验证部分展示了模块加载成功的日志和配置信息。总结中强调了插件化编程的优势及其在多个方面的应用。
120 63
|
4月前
|
存储
高效定时器设计方案——层级时间轮
高效定时器设计方案——层级时间轮
61 2
|
2月前
|
JavaScript 前端开发 算法
【Vue秘籍揭秘】:掌握这一个技巧,让你的列表渲染速度飙升!——深度解析`key`属性如何成为性能优化的秘密武器
【8月更文挑战第20天】Vue.js是一款流行前端框架,通过简洁API和高效虚拟DOM更新机制简化响应式Web界面开发。其中,`key`属性在列表渲染中至关重要。本文从`key`基本概念出发,解析其实现原理及最佳实践。使用`key`帮助Vue更准确地识别列表变动,优化DOM更新过程,确保组件状态正确维护,提升应用性能。通过示例展示有无`key`的区别,强调合理使用`key`的重要性。
53 3
|
3月前
|
安全 NoSQL PHP
Laravel框架进阶:掌握队列系统,优化应用性能
Laravel框架进阶:掌握队列系统,优化应用性能
54 0
|
5月前
|
开发工具 C语言 git
【嵌入式开源库】MultiTimer 的使用,一款可无限扩展的软件定时器
【嵌入式开源库】MultiTimer 的使用,一款可无限扩展的软件定时器
|
JavaScript 前端开发 调度
「深入浅出」主流前端框架更新批处理方式
介绍了目前主流框架如何实现的批量更新
「深入浅出」主流前端框架更新批处理方式
|
存储 算法 Java
【算法数据结构专题】「延时队列算法」史上手把手教你针对层级时间轮(TimingWheel)实现延时队列的开发实战落地(下)
承接上一篇文章【算法数据结构专题】「延时队列算法」史上手把手教你针对层级时间轮(TimingWheel)实现延时队列的开发实战落地(上)】我们基本上对层级时间轮算法的基本原理有了一定的认识,本章节就从落地的角度进行分析和介绍如何通过Java进行实现一个属于我们自己的时间轮服务组件,最后,在告诉大家一下,其实时间轮的技术是来源于生活中的时钟。
137 1
【算法数据结构专题】「延时队列算法」史上手把手教你针对层级时间轮(TimingWheel)实现延时队列的开发实战落地(下)
|
存储 缓存 负载均衡
CPU基础知识详解
CPU基础知识详解
151 0
|
缓存 API C语言
|
前端开发 JavaScript
十四、深入核心,详解事件循环机制【下】
JavaScript的学习零散而庞杂,很多时候我们学到了一些东西,但是却没办法感受到进步!甚至过了不久,就把学到的东西给忘了。为了解决自己的这个困扰,在学习的过程中,我一直在试图寻找一条核心的线索,只要顺着这条线索,我就能够一点一点的进步。 前端基础进阶正是围绕这条线索慢慢展开,而事件循环机制(Event Loop),则是这条线索的最关键的知识点
155 0
十四、深入核心,详解事件循环机制【下】