如何利用 OpenVINO™ 部署 Qwen2 多模态模型

简介: 本文将分享如何利用 OpenVINO™ 工具套件在轻薄本上部署 Qwen2-Audio 以及 Qwen2-VL 多模态模型。

多模态大模型的核心思想是将不同媒体数据(如文本、图像、音频和视频等)进行融合,通过学习不同模态之间的关联,实现更加智能化的信息处理。简单来说,多模态大模型可以可以理解多种不同模态的输入数据,并输出相应反馈结果,例如图像理解,语音识别,视觉问题等。

image.png

图:多模态大模型任务流程

多模态大模型都会将文本生成模型作为底座模型,以支持对话能力,其中千问团队近期发布的 Qwen2-Audio 和 Qwen2-VL 便是以 Qwen2 为底座的多模态大模型,分别支持语音/文本以及图像/文本作为多模态输入,相比上一代的 Qwen-VL 和 Qwen-Audio ,基于 Qwen2 的多模态模型具备更强大的视觉理解以语音理解能力,并实现了多语种的支持。本文将分享如何利用 OpenVINO™ 工具套件在轻薄本上部署 Qwen2-Audio 以及 Qwen2-VL 多模态模型。

Qwen2-Audio 示例地址:

https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/qwen2-audio/qwen2-audio.ipynb

Qwen2-VL 示例地址:

https://github.com/openvinotoolkit/openvino_notebooks/blob/latest/notebooks/qwen2-vl/qwen2-vl.ipynb

Qwen2 workshop:

https://github.com/openvino-dev-samples/qwen2-openvino-workshop

Qwen2-VL

1. 模型转换及量化

目前 Qwen2-VL 的推理任务还没有被完全集成进 Optimum 工具中,因此我们需要手动完成模型的转换和量化,其中包含语言模型 lang_model,图像编码模型 image_embed,文本 token 编码模型 embed_token 模型以及图像特征映射模型 image_embed_merger。

为了简化转化步骤,我们提前对这些转化任务行进行了封装,开发者只需要调用 Qwen2-VL 示例地址中提供的函数便可完成这些模型的转换,并对其中负载最大的语言模型进行量化。这里以 Qwen2-VL-2B-Instruct 为例。

from ov_qwen2_vl import convert_qwen2vl_model
import nncf
compression_configuration = {
    "mode": nncf.CompressWeightsMode.INT4_ASYM,
    "group_size": 128,
    "ratio": 1.0,
}
convert_qwen2vl_model("Qwen/Qwen2-VL-2B-Instruct", model_dir, compression_configuration)

2. 图片内容理解

此外在该示例中,我们也对模型的推理任务进行封装,通过以下代码便可快速部署图像理解任务,并实现文字的流式输出。由于 Qwen2-VL 对于输入数据有格式上的要求,因此我们需要提前将图片和文本包装为指定的字典格式,并调用模型自带的 processor 脚本将其转换为 prompt 输入。

question = "Describe this image."
messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "image": f"file://{example_image_path}",
            },
            {"type": "text", "text": question},
        ],
    }
]

你可以将以下推理代码中的 device 设置为“GPU“,以激活系统中 Intel 集显或是独显的能力。

from ov_qwen2_vl import OVQwen2VLModel
model = OVQwen2VLModel(model_dir, device)
processor = AutoProcessor.from_pretrained(model_dir, min_pixels=min_pixels, max_pixels=max_pixels)
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
    text=[text],
    images=image_inputs,
    videos=video_inputs,
    padding=True,
    return_tensors="pt",
)
generated_ids = model.generate(**inputs, max_new_tokens=100, streamer=TextStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True))

示例输出效果如下:

image.png

Question:

Describe this image.

Answer:

The image depicts a woman sitting on a sandy beach with a large dog. The dog is standing on its hind legs, reaching up to give the woman a high-five. The woman is smiling and appears to be enjoying the moment. The background shows the ocean with gentle waves, and the sky is clear with a soft light, suggesting it might be either sunrise or sunset. The scene is serene and joyful, capturing a heartwarming interaction between the woman and her dog.

3. 视频内容理解

由于 Qwen2-VL 可以同时支持对多个图像输入,因此可以基于这一特性实现视频内容理解,实现方法也特别简单,仅需对视频文件抽帧后保存为图片,并将这些图片基于 Qwen2-VL 提供的预处理脚本合并后,转化为 Prompt 模板,送入模型流水线进行推理。值得注意的是,当你将"type"设置为 "video"后,processor 会自动将两张图片拼接为一张,进行处理,以优化推理性能,并降低多图任务的内存占用。

question = "描述一下这段视频"
messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "video",
                "video": [
                    "file://./examples/keyframe_1.jpg",
                    "file://./examples/keyframe_2.jpg",
                    "file://./examples/keyframe_3.jpg",
                    "file://./examples/keyframe_4.jpg",
                ],
                "fps": 1.0,
            },
            {"type": "text", "text": question},
        ],
    }
]

Qwen2-Audio

1. 模型转换及量化

针对 Qwen2-Audio,我们同样在 Qwen2-VL 示例地址中对模型的转换和量化步骤进行了接口封装,其中包含语言模型 lang_model,音频编码模型 audio_embed,文本 token 编码模型 embed_token 模型以及音频特征映射模型 projection。使用方法如下:

from ov_qwen2_audio_helper import convert_qwen2audio_model
import nncf
compression_configuration = {
    "mode": nncf.CompressWeightsMode.INT4_ASYM,
    "group_size": 128,
    "ratio": 1.0,
}
convert_qwen2audio_model("Qwen/Qwen2-Audio-7B-Instruct", model_dir, compression_configuration)

2. 语音对话

Qwen2-Audio 提供语音对话和音频分析两种任务模式。在语音对话模式中,用户只需输入语音而无需输入文字,指令则通过语音直接传达给模型。下面则是一个音频分析的例子。

conversation = [
    {"role": "system", "content": "You are a helpful assistant."},
    {
        "role": "user",
        "content": [
            {"type": "audio", "audio_url": audio_chat_url},
        ],
    },
]
text = processor.apply_chat_template(conversation, add_generation_prompt=True, tokenize=False)
audios = [librosa.load(audio_chat_file, sr=processor.feature_extractor.sampling_rate)[0]]
inputs = processor(text=text, audios=audios, return_tensors="pt", padding=True)
generate_ids = ov_model.generate(**inputs, max_new_tokens=50, streamer=TextStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True))

和 Qwen2-VL 一样,我们需要在构建输入 Prompt 前,提前准备好字典格式的数据,可以看到在语音对话模式下,我们仅需提供音频文件的地址或路径。该示例的输出如下:

Answer:

Yes, I can guess that you are a female in your twenties.

从输出结果可以看到 Qwen2-Audio 不光可以理解音频内容,并且可以识别对话者的音色和语调。

3. 音频分析

在音频分析模式下,Qwen2-Audio则支持多模态输入,此时我们可以将文本和音频拼接在一起,作为prompt送入模型中进行推理。

question = "What does the person say?"
conversation = [
    {"role": "system", "content": "You are a helpful assistant."},
    {
        "role": "user",
        "content": [
            {"type": "audio", "audio_url": audio_url},
            {"type": "text", "text": question},
        ],
    },
]

示例输入结果:

Answer:

The person says: 'Mister Quilter is the apostle of the middle classes, and we are glad to welcome his gospel.'

总结与展望

通过 OpenVINO™ 封装后的 API 函数,开发者可以非常便捷地对预训练模型进行转化压缩,并实现本地化的推理任务部署。同时基于 Qwen2 系列多模态模型强大的音频与图像理解能力,我们仅在轻薄本上便可以构建起一个完整的语言模型应用,在保护用户数据隐私的同时,降低硬件门槛。后期我们也计划将 Qwen2 多模态系列模型的流水线集成进 Optimum 组件中,方便开发者更灵活地进行调用,敬请期待。

参考资料

Qwen2-VL:

https://github.com/QwenLM/Qwen2-VL

Qwen2-Audio:

https://github.com/QwenLM/Qwen2-Audio

相关文章
|
6月前
|
文字识别 前端开发
CodeFuse-VLM 开源,支持多模态多任务预训练/微调
随着huggingface开源社区的不断更新,会有更多的vision encoder 和 LLM 底座发布,这些vision encoder 和 LLM底座都有各自的强项,例如 code-llama 适合生成代码类任务,但是不适合生成中文类的任务,因此用户常常需要根据vision encoder和LLM的特长来搭建自己的多模态大语言模型。针对多模态大语言模型种类繁多的落地场景,我们搭建了CodeFuse-VLM 框架,支持多种视觉模型和语言大模型,使得MFT-VLM可以适应不同种类的任务。
694 0
|
6月前
|
人工智能 算法 开发工具
Mixtral 8X7B MoE模型在阿里云PAI平台的微调部署实践
Mixtral 8x7B 是Mixtral AI最新发布的大语言模型,是当前最为先进的开源大语言模型之一。阿里云人工智能平台PAI,提供了对于 Mixtral 8x7B 模型的全面支持,开发者和企业用户可以基于 PAI-快速开始轻松完成Mixtral 8x7B 模型的微调和部署。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
NVIDIA Triton系列13-用 FasterTransformer 和 Triton 加速大型 Transformer 模型的推理
本文介绍了 NVIDIA FasterTransformer 库及其在加速大型 Transformer 模型推理中的应用。FasterTransformer 是一个高效、可扩展的库,支持分布式多 GPU 推理,特别适合处理具有数万亿参数的模型。文章还详细讲解了如何使用 FasterTransformer 和 NVIDIA Triton 推理服务器优化 GPT-J 和 T5 模型的推理性能,包括张量并行、流水线并行等技术。
61 0
NVIDIA Triton系列13-用 FasterTransformer 和 Triton 加速大型 Transformer 模型的推理
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】LLM主流开源大模型介绍
【AI大模型】LLM主流开源大模型介绍
|
3月前
|
人工智能 PyTorch 算法框架/工具
AI计算机视觉笔记二:基于YOLOV5的CPU版本部署openvino
本文档详细记录了YOLOv5模型在CPU环境下的部署流程及性能优化方法。首先,通过设置Python虚拟环境并安装PyTorch等依赖库,在CPU环境下成功运行YOLOv5模型的示例程序。随后,介绍了如何将PyTorch模型转换为ONNX格式,并进一步利用OpenVINO工具包进行优化,最终实现模型在CPU上的高效运行。通过OpenVINO的加速,即使是在没有GPU支持的情况下,模型的推理速度也从约20帧每秒提高到了50多帧每秒,显著提升了性能。此文档对希望在资源受限设备上部署高性能计算机视觉模型的研究人员和工程师具有较高的参考价值。
|
4月前
|
存储 自然语言处理 测试技术
Llama3.1-8B模型中文版!OpenBuddy发布新一代跨语言模型
7月23日,Meta发布了新一代开源模型系列:Llama3.1。其中405B参数的版本刷新了开源模型性能的上限,在多种指标上的测试成绩接近GPT-4等闭源模型的水平,甚至在部分基准测试中展现出来了超越头部闭源模型的潜力。
|
4月前
|
人工智能 开发框架 自然语言处理
基于 Qwen-Agent 与 OpenVINO™ 构建本地 AI 智能体
Qwen2 是阿里巴巴集团 Qwen 团队研发的大语言模型和大型多模态模型系列。Qwen2 具备自然语言理解、文本生成、视觉理解、音频理解、工具使用、角色扮演、作为 AI Agent 进行互动等多种能力。
|
4月前
|
算法 API 数据中心
魔搭社区利用 NVIDIA TensorRT-LLM 加速开源大语言模型推理
魔搭社区于 2022 年 11 月初创建,首次在业界提出了 “模型即服务”( MaaS, Model as a Service)的理念。
|
3月前
|
机器学习/深度学习 数据采集 物联网
【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
130 0
|
6月前
|
人工智能 安全 测试技术
微软开源4.2B参数多模态SLM模型Phi-3-vision,魔搭社区推理、微调实战教程来啦!
在 Microsoft Build 2024 上,微软持续开源了 Phi-3 系列的新模型们。包括 Phi-3-vision,这是一种将语言和视觉功能结合在一起的多模态模型。