数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。

简介: 这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。

前言

一、单源最短路径

1、单源最短路径问题

  • 解决的问题: 求解单源最短路径,即各个节点到达源点的最短路径或权值。如下图中
    在这里插入图片描述
    考察其他所有节点到源点的最短路径和长度
  • 局限性: 无法解决权值为负数的情况
  • 资料

2、Dijkstra 初始化

首先已知的是:
给定 邻接矩阵表示的图Graph、源点S、终点T

a、参数

参数:

参数名 解释
S 记录当前已经处理过的源点到最短节点
U 记录还未处理的节点
dist[] 记录各个节点到起始节点的最短权值
path[] 记录各个节点的上一级节点(用来联系该节点到起始节点的路径)

b、初始化参数

  • 顶点集S: 节点A到自已的最短路径长度为0。只包含源点,即S={A},代码中没有这个,这里是为了步骤清晰而设置的。
  • 顶点集U: 包含除A外的其他顶点. 即U={B,C,D,E,F,G}
  • dist[]: 源点还不能到达的节点,其权值为∞
A B C D E F G
dist[]: 0 1 2 3 4 5 6
初始化值: 0 4 6 6

path[]: 记录当前节点的前驱节点下标(源点还不能到达的节点为-1)

A B C D E F G
path[]: 0 1 2 3 4 5 6
初始化值: 0 0 0 0 -1 -1 -1

c、算法步骤

在这里插入图片描述

  1. 初始化:设定除源节点以外的其它所有节点到源节点的距离为INFINITE(一个很大的数),且这些节点都没被处理过。如上图所示
  2. 从源节点出发,更新相邻节点(图中为B、C、D)到源节点的距离。然后在所有节点中选择一个最段距离的点作为当前节点。
  3. 标记当前节点为done(表示已经被处理过),与步骤2类似,更新其相邻节点的距离。(这些相邻节点的距离更新也叫 松弛,目的是让它们与源节点的距离最小。因为你是在当前最小距离的基础上进行更新的,由于当前节点到源节点的距离已经是最小的了,那么如果这些节点之前得到的距离比这个距离大的话,我们就更新它)。
  4. 步骤3做完以后,设置这个当前节点已被done,然后寻找下一个具有最小代价(cost)的点,作为新的当前节点,重复步骤3.
  5. 如果最后检测到目标节点时,其周围所有的节点都已被处理,那么目标节点与源节点的距离就是最小距离了。如果想看这个最小距离所经过的路径,可以回溯,前提是你在步骤3里面加入了当前节点的最优路径前驱节点信息。
  • 我总结了下可用如下几句话代替:
    两步走
    1. 从dist[]中在集合U中的选择最小距离加入到S中,作为当前节点。(最小距离:就是 当前节点到源点的最小距离)
    2. 遍历当前节点的邻边节点:更新dist[]和path[]
      • 如果经过当前节点+邻边权重 < 邻边节点,则改变dist[]和path[],否者不改变。

3、Dijkstra 算法详细步骤

a、第一轮算法执行

在这里插入图片描述

  • 如上图,因为dist[]中排出掉集合U中节点,最小值是4,也就是节点B,所以将B纳入到集合S中(圈中)。

  • 首先 在dist[]数组中并在集合U中 最小值是节点B,既当前节点,其邻边有C和E,所以看是否要更新C和E。

    • 节点C:因为C的最小距离dist[1](B的最小距离)4+1(B到C的距离)=5 < dist[2](C的最小距离) = 6,所以 dist[2]=5,path[2]=1
    • 节点E:因为E的最小距离 dist[1](B的最小距离)4+7(B到E的距离)=11 < dist[4] (E的最小距离)=无穷大,所以 dist[4]=11,path[4]=1
  • 第一轮算法两个邻边节点C、E有改变

b、第二轮算法执行

在这里插入图片描述

  • 如上图,因为dist[]中排除掉集合U中节点,最小值是5,也就是节点C,所以将C纳入到集合S中(圈中)。
  • 首先在dist[]数组中并在集合U中 最小值是节点C,既当前节点,其邻边有E和F,所以看是否要更新E和F。
    • 节点E:因为C的最小距离 dist[2](也就是C的最小距离)5+6(C到E的距离)=11 == dist[4](E的最小距离) = 11,所以不动
    • 节点F:因为F的最小距离 dist[2](也就是C的最小距离)5+4(C到F的距离)=9 < dist[5] (F的最小距离)=无穷大,所以 dist[5]=9,path[5]=2
  • 第二轮算法两个邻边节点仅有 F有改变

c、第三轮算法执行

在这里插入图片描述

  • 如上图,因为dist[]中排出掉集合U中节点,最小值是6,也就是节点D,所以将D纳入到集合S中(圈中)。
  • 首先在dist[]数组中并在集合U中 最小值是节点D,既当前节点,其邻边有C和F,所以看是否要更新C和F。
  • 节点C:因为C的最小距离 dist[3](也就是D的最小距离)6+2(D到C的距离)=8 > dist[2](C的最小距离) = 5 ,所以不动
  • 节点F:因为F的最小距离 dist[3](也就是D的最小距离)6+5(D到F的距离)=11 > dist[5] (F的最小距离)=9,所以不动
  • 第三轮算法两个邻边节点C、F都没有改变

d、第四轮算法执行

在这里插入图片描述

  • 如上图,因为dist[]中排出掉集合U中节点,最小值是9,也就是节点F,所以将F纳入到集合S中(圈中)。
  • 首先在dist[]数组中并在集合U中 最小值是节点F,既当前节点,其邻边有E和G,所以看是否要更新E和G 。
  • 节点E:因为E的最小距离 dist[5](也就是F的最小距离) 9 +1(F到E的距离)=10 < dist[4](E的最小距离) =11,所以 dist[4] = 10,path[4]=5
  • 节点G:因为G的最小距离 dist[5](也就是F的最小距离) 9 +8(F到G的距离)=17 < dist[6](G的最小距离) =无穷大,所以 dist[6]=17,path[6]=5
  • 第四轮算法两个邻边节点E、G都有改变

e、第五轮算法执行

在这里插入图片描述

  • 如上图,因为dist[]中排出掉集合U中节点,最小值是9,也就是节点F,所以将F纳入到集合S中(圈中)。
  • 首先在dist[]数组中并在集合U中 最小值是节点E,既当前节点,其邻边有G,所以看是否要更新G
  • 节点G:因为G的最小距离 dist[4](也就是E的最小距离) 10 +6(E到G的距离)=16 < dist[6](G的最小距离) =17,所以 dist[6]=16,path[6]=4
  • 第五轮算法邻边 节点G有改变

f、第六轮算法执行

在这里插入图片描述

  • 如上图,因为dist[]中排出掉集合U中节点,最小值是16,也就是节点G,所以将G纳入到集合S中(圈中)。
  • 首先在dist[]数组中并在集合U中 最小值是节点G,既当前节点,其没有邻边。
  • 第六轮算法邻边节点G没有改变
  • 到此算法遍历结束

4、java算法实现

给定矩阵表示的Graph结构。输入源点v0和终点v1。

二、多源最短路径

1、多源最短路径问题

  • 上面的Dijkstra 解决的是单源最短路径的问题,首先要给定 开始节点和终止结点,如果换了开始和终止节点,那就要每次都要重新跑一次。
  • 那就引出了多源最短路径问题:就是执行一次算法,求出每两个点之间的最短距离,这就是多源最短路径算法。这个算法代码略简单一些。
  • 思想只有一个:要算两个点之间的最短距离,就看有没有第三个点使得

2、Floyd初始化

首先已知的是:
给定 **邻接矩阵表示的图Graph。

a、参数

参数名 解释
A[][] 函数中的参数,需要返回,存储的是节点的前置节点。
path[][] 存储的是每两点之间的所需距离。

b、参数初始化

参数名 解释
A[][] 就是图的赋值,从代码中可以看出,比较简单
path[][] 默认都是-1.表示从A点到B点是直达的。

c、算法步骤

  1. 对于每个顶点v(体现在代码的第一层for循环),和任意一顶点(i,j)(体现代码的第二、三层循环),切 i!=j、v!=i、v!=j
  2. 如果A[i][j] > A[i][v] + A[]v[j],则将A[i][j] 更新为 A[i][v] + A[v][j] 的值,并且将path[i][j]改为v

3、Floyd算法详细步骤

4、java 算法实现

package com.feng.algorithm.self_learn.floyd.floyd1;

/**
 * 学习视频:https://www.bilibili.com/video/BV1LE411R7CS
 */
public class FloydAlgorithm {
    public static void main(String[] args) {
        int[][] graph = new int[4][4];
        int N = Short.MAX_VALUE;
        graph[0] = new int[]{0, 5, N, 7};
        graph[1] = new int[]{N, 0, 4, 2};
        graph[2] = new int[]{3, 3, 0, 2};
        graph[3] = new int[]{N, N, 1, 0};

        int[][] path = new int[4][4];
        int[][] A = Floyd.floyd(graph, path);
        int u = 1;
        int v = 0;
        Floyd.printPath(u, v, path);
        System.out.println();
        System.out.println(u + "->" + v +" shortest path is :" + A[u][v]);
    }
}
class Floyd {

    /**
     * 佛洛依德算法,给定邻接矩阵表示的图,
     * path[][]:存放路径中间的节点,如果是-1就是直达
     * A[][]:存放任意两个节点之间的距离
     * 举例:从1-0,从A得出距离是6,从path得出 1-3-2-0
     * @param graph
     * @param path
     */
    static int[][] floyd(int[][] graph, int[][] path) {
        int n = graph.length;
        int v, i, j;
        int[][] A = new int[n][n];
        for (i = 0; i < n; i++) {
            for (j = 0; j < n; j++) {
                A[i][j] = graph[i][j];
                path[i][j] = -1;
            }
        }

        for (v = 0; v < n; v++) {
            for (i = 0; i < n; i++) {
                for (j = 0; j < n; j++) {
                    if (A[i][j] > A[i][v] + A[v][j]) {
                        A[i][j] = A[i][v] + A[v][j];
                        path[i][j] = v;
                    }
                }
            }
        }
        return A;
    }

    /**
     * 递归打印路径
     * @param u
     * @param v
     * @param path
     */
    static void printPath(int u, int v, int[][] path) {
        if (path[u][v] == -1) { // 如果等于 -1 。说明就是直达的
            System.out.printf(u + "->" + v + " ");
        } else {
            int mid = path[u][v];
            printPath(u, mid, path);
            printPath(mid, v, path);
        }
    }
}
相关文章
|
2月前
|
监控 Java API
如何使用Java语言快速开发一套智慧工地系统
使用Java开发智慧工地系统,采用Spring Cloud微服务架构和前后端分离设计,结合MySQL、MongoDB数据库及RESTful API,集成人脸识别、视频监控、设备与环境监测等功能模块,运用Spark/Flink处理大数据,ECharts/AntV G2实现数据可视化,确保系统安全与性能,采用敏捷开发模式,提供详尽文档与用户培训,支持云部署与容器化管理,快速构建高效、灵活的智慧工地解决方案。
|
2月前
|
SQL 安全 Java
安全问题已经成为软件开发中不可忽视的重要议题。对于使用Java语言开发的应用程序来说,安全性更是至关重要
在当今网络环境下,Java应用的安全性至关重要。本文深入探讨了Java安全编程的最佳实践,包括代码审查、输入验证、输出编码、访问控制和加密技术等,帮助开发者构建安全可靠的应用。通过掌握相关技术和工具,开发者可以有效防范安全威胁,确保应用的安全性。
58 4
|
3月前
|
Java 程序员 编译器
在Java编程中,保留字(如class、int、for等)是具有特定语法意义的预定义词汇,被语言本身占用,不能用作变量名、方法名或类名。
在Java编程中,保留字(如class、int、for等)是具有特定语法意义的预定义词汇,被语言本身占用,不能用作变量名、方法名或类名。本文通过示例详细解析了保留字的定义、作用及与自定义标识符的区别,帮助开发者避免因误用保留字而导致的编译错误,确保代码的正确性和可读性。
66 3
|
3月前
|
移动开发 Java 大数据
深入探索Java语言的核心优势与现代应用实践
【10月更文挑战第10天】深入探索Java语言的核心优势与现代应用实践
112 4
|
8天前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者
|
10天前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
|
10天前
|
消息中间件 缓存 安全
Java多线程是什么
Java多线程简介:本文介绍了Java中常见的线程池类型,包括`newCachedThreadPool`(适用于短期异步任务)、`newFixedThreadPool`(适用于固定数量的长期任务)、`newScheduledThreadPool`(支持定时和周期性任务)以及`newSingleThreadExecutor`(保证任务顺序执行)。同时,文章还讲解了Java中的锁机制,如`synchronized`关键字、CAS操作及其实现方式,并详细描述了可重入锁`ReentrantLock`和读写锁`ReadWriteLock`的工作原理与应用场景。
|
11天前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
33 3
|
11天前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
92 2
|
19天前
|
安全 Java API
java如何请求接口然后终止某个线程
通过本文的介绍,您应该能够理解如何在Java中请求接口并根据返回结果终止某个线程。合理使用标志位或 `interrupt`方法可以确保线程的安全终止,而处理好网络请求中的各种异常情况,可以提高程序的稳定性和可靠性。
46 6