动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)

简介: 这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。

前言

一、问题描述

在这里插入图片描述
在这里插入图片描述

二、DP步骤

1、最优子结构

  • 给定序列𝑆=[$𝑠_1,𝑠_2,⋯,𝑠_𝑛$],如果子序列[𝑆($𝑖_1$ ),𝑆($𝑖_2$ ), ⋯,𝑆($𝑖_𝑘$)]是其最大上升子序列,则[𝑆($𝑖_1$ ),𝑆($𝑖_2$ ), ⋯,𝑆(𝑖(𝑘−1) )]是子问题𝑆=[𝑠1,𝑠2,⋯,𝑆(𝑖(𝑘−1) )]的最大上升子序列吗?
  • 例:给定 S = [1, 3, 4, 2, 7, 9, 6, 8],最大上升子序列可为 [1, 3, 4, 6, 8],最大长度为5。
  • [1, 3, 4, 6]显然不是[1, 3, 4, 2, 7, 9, 6]的最大上升子序列,因为[1, 3, 4, 7, 9]是其最大上升子序列。
    注意:可以同时有多个最大上升子序列!每个的最大值都不相同
  • 如果直接把最大上升子序列的长度作为规划目标,那么该问题不具备最优子结构性质(因为可能同时有多个最大上升子序列,使得最优子结构不成立)。只能采用间接的办法,引入一些中间目标作为动态规划的对象。

a、限界上升子序列

在这里插入图片描述
在这里插入图片描述

b、最优子结构性质

在这里插入图片描述
在这里插入图片描述

2、状态表示和递推方程

在这里插入图片描述
在这里插入图片描述
公式讲解:只求长度,不求具体的子序列

  • 逐一找出1—(m-1)个元素中所有小于$S_m$的元素$S_i$及其对应的Len($S_i$)值,然后从中取最大的一个Len(.)值,然后加1。【 1–i个元素中所有大于Sm的元素的Len(.)值全都不予考虑】

  • 如果精简为max{Len(i)+1 | 1≤i<m, $S_m$<$S_i$},可以吗?
    sure

3、计算最优值

  • 𝐿𝑒𝑛(𝑚)的计算同样按照自底向上的顺序进行:所有子问题的总数为n个(即,分别以每个元素为限界);m越小,其子问题𝐿𝑒𝑛(𝑚)求解的复杂度就越低
  • 当所有的𝐿𝑒𝑛(𝑚)(1≤𝑚≤𝑛)都计算完毕后,统计其中最大值,即可得到输入序列 S 的最大上升子序列
  • 注意:最大上升子序列的长度不一定等于𝑳𝒆𝒏(𝒏)
    在这里插入图片描述
    答案详解:
  1. Len(1) = 1
  2. Len(3) = 2:找到3之前小于3的数字中,最大的Len(.)值加1,即:len(1)+1=1。
  3. Len(4)=3:找到4之前小于4的数字:1和3,最大Len(.)值加1,即:len(3)+1=3。
  4. Len(2)=2:找到2之前小于2的数字:1,最大Len(.)值加1,即:Len(1)+1=2。
  5. Len(7)=4:找到7之前小于7的数字:1,3,4,2,最大Len(.)值加1,即:Len(4)+1=4。
  6. Len(6)=4:找到6之前小于6的数字:1,3,4,2,最大Len(.)值加1,即:Len(4)+1=4。
  7. Len(8)=5:找到8之前小于8的数字:1,2,3,2,7,6,最大Len(.)值加1,即:Len(7)+1=5 或者 Len(6)+1=5

4、算法实现

时间复杂度:$n^2$

/**
 * DP算法之最大上升子序列问题
 */
public class Main4 {
    public static int MAXN = 100;
    public static void main(String[] args) {
        int[] seqSrc = {1, 3, 4, 2, 7, 6, 8};
        int i = LISLength(7, seqSrc);
        System.out.println(i);
    }

    public static int LISLength(int num, int[] seqSrc) {
        int[] Len = new int[MAXN];
        int res = 1;
        //设第m个数的值为上界
        for (int m = 0; m < num; m++) {  
            //每个新m为上界时,Len[m]总是从1开始
            Len[m] = 1;     
            for (int i = 0; i < m; i++)
                //遍历所有以第i个数为上界的长度,从中选出符合max公式条件的最大值加1,就是Len[m]。
                if (seqSrc[i] < seqSrc[m] && Len[i] + 1 > Len[m])   
                    Len[m] = Len[i] + 1;
            //记录从len[1]到len[m]中的最大值,res为最大公共子序列长度,最后的解
            res = (res > Len[m] ? res : Len[m]);  
        }
        return res;
    }
}

在这里插入图片描述
代码解说:

  1. 第一个for遍历:有几个元素就遍历几个,计算每个的Len(.)值。
  2. 第二个for遍历:遍历当前元素的最大Len(.)值。
    • seqSrc[i] < seqSrc[m] :过滤小于当前元素的值,
    • Len[i] + 1 > Len[m]:找到最大值

三、优化:非DP /二分法

时间复杂度 nlog$_2$n。

1、新问题

在这里插入图片描述
上图中的公式中的 i ,为数组的下标
例:

  1. k = 4 的值有两个,Len(5) = 4,Len(6) = 4
  2. S[5] = 7, S[6] = 6
  3. 所以 T[k=4] = 6。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

2、算法实现

/**
 * DP之最大上升子序列:时间复杂度  nlog2n
 */
public class Main5 {

    public static void main(String[] args) {
        int[] seqSrc = {1, 3, 4, 2, 7, 6, 8};
        int i = lengthOfLIS(seqSrc);
        System.out.println(i);
    }

    public static int lengthOfLIS(int[] arr) {
        if (arr == null || arr.length == 0) {
            return 0;
        }
        int[] ends = new int[arr.length];
        ends[0] = arr[0];
        int right = 0;
        int l = 0;
        int r = 0;
        int m = 0;
        int max = 1;
        for (int i = 1; i < arr.length; i++) {
            l = 0;
            r = right;
            while (l <= r) {
                m = (l + r) / 2;
                if (arr[i] > ends[m]) {
                    l = m + 1;
                } else {
                    r = m - 1;
                }
            }
            right = Math.max(right, l);
            ends[l] = arr[i];
            max = Math.max(max, l + 1);
        }
        return max;
    }
}

在这里插入图片描述

相关文章
|
1天前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
动态规划算法学习三:0-1背包问题
|
1天前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
动态规划算法学习二:最长公共子序列
|
1天前
|
存储 算法
动态规划算法学习一:DP的重要知识点、矩阵连乘算法
这篇文章是关于动态规划算法中矩阵连乘问题的详解,包括问题描述、最优子结构、重叠子问题、递归方法、备忘录方法和动态规划算法设计的步骤。
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
4天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
2天前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
11 2
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
10天前
|
算法 决策智能
基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数
该程序基于禁忌搜索算法求解车辆路径问题(VRP),使用MATLAB2022a版本实现,并带有GUI界面。用户可通过界面设置参数并查看结果。禁忌搜索算法通过迭代改进当前解,并利用记忆机制避免陷入局部最优。程序包含初始化、定义邻域结构、设置禁忌列表等步骤,最终输出最优路径和相关数据图表。
|
8天前
|
算法
基于最小二乘递推算法的系统参数辨识matlab仿真
该程序基于最小二乘递推(RLS)算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计并计算误差及收敛曲线,对比不同信噪比下的估计误差。在MATLAB 2022a环境下运行,结果显示了四组误差曲线。RLS算法适用于实时、连续数据流中的动态参数辨识,通过递推方式快速调整参数估计,保持较低计算复杂度。
|
11天前
|
编解码 算法 数据挖掘
基于MUSIC算法的六阵元圆阵DOA估计matlab仿真
该程序使用MATLAB 2022a版本实现基于MUSIC算法的六阵元圆阵DOA估计仿真。MUSIC算法通过区分信号和噪声子空间,利用协方差矩阵的特征向量估计信号到达方向。程序计算了不同角度下的MUSIC谱,并绘制了三维谱图及对数谱图,展示了高分辨率的DOA估计结果。适用于各种形状的麦克风阵列,尤其在声源定位中表现出色。