目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)

简介: 这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。

一、目标分类介绍

目标分类是一种监督学习任务,其目标是根据输入数据的特征将其分配到预定义的类别中。这种分类方法在许多实际应用中都有广泛的应用,如垃圾邮件检测、图像识别、情感分析等。

目标分类的基本流程包括:数据预处理(如清洗、标准化)、特征提取、模型选择和训练、模型评估和优化。其中,模型的选择和训练是关键步骤,常见的分类算法有决策树、支持向量机、神经网络等。

目标分类的优点是可以自动地进行分类,无需人工干预,同时也可以通过调整模型参数来提高分类的准确性。但是,目标分类也存在一些挑战,如数据的不平衡问题、过拟合问题等。

1.1 二分类和多分类的区别

二分类是指将样本分为两个类别,多分类是指将样本分为多个类别。在机器学习中,常见的分类算法有决策树、支持向量机、神经网络等。其中,决策树是一种基于规则的分类算法,支持向量机是一种基于间隔最大化的分类算法,神经网络是一种基于非线性映射的分类算法。对于多分类问题,可以采用一对多的模型,即将一个二分类器用于多个类别的预测;也可以采用多对多的模型,即将多个二分类器用于多个类别的预测 。

1.2 单标签和多标签输出的区别

单标签输出是指模型的输出只有一个预测值,即 f (x) = y。多标签输出是指模型的输出具有多个预测值,即 f (x_1,x_2,…,x_n) = y_1, y_2,…,y_n。在多标签分类中,每个输入样本需要零个或多个标签作为输出,同时需要输出 。

二、代码获取

  • 支持自定义数据集训练
  • 支持网络架构:resnet18,resnet50,mobilenet_v2,googlenet
  • 整套训练代码和测试代码(Pytorch版本)
  • 支持多种优化器选择
  • 支持选择多种损失函数:交叉熵、labelSmoothing、BCE等
  • 所有的配置文件写在yaml文件,更方便管理

在这里插入图片描述
在这里插入图片描述

三、数据集准备

在这里插入图片描述

四、环境搭建

安装python、torch、torchvision和pip安装requirements
安装python可以通过anaconda安装虚拟环境,python == 3.7.11
torch和torchvision版本是torch 1.8.0+cpu和torchvision 0.9.0+cpu

参考这篇博客:点击

4.1 环境测试

在这里插入图片描述
在这里插入图片描述

五、模型训练

在这里插入图片描述
然后运行python train.py即可开始训练。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

六、模型测试

在这里插入图片描述
在这里插入图片描述
设置以上五个地方。由于网络真实预测的时候,可能会出现一张图片包含多种分类的目标。考虑到这种情况就不能简单的用argmax来获取最大值的索引了,所以我们应该通过设置阈值来记录相应类别的索引,然后再根据索引回溯到我们原始的目标信息。
修改后的代码如下

      # 单标签分类
      pred_index = np.argmax(prob_scores, axis=1)
      pred_score = np.max(prob_scores, axis=1)
AI 代码解读

修改为

    def filter_array(self, arr, threshold):
        # 获取满足条件的索引和值
        arr = arr.flatten()
        indices = np.where(arr >= threshold)[0]
        values = arr[indices]
        return indices, values

    pred_index,pred_score = self.filter_array(prob_scores, threshold)
AI 代码解读

这里的阈值可以直接通过参数来进行设置。

在这里插入图片描述
在这里插入图片描述

6.1 多标签训练-单标签输出结果

如果只需要输出单个目标,需要修改成以下地方
在这里插入图片描述

6.2 多标签训练-多标签输出结果

修改成这样
在这里插入图片描述

目录
打赏
0
0
0
0
85
分享
相关文章
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
166 18
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
DeepSeek生成对抗网络(GAN)的训练与应用
生成对抗网络(GANs)是深度学习的重要技术,能生成逼真的图像、音频和文本数据。通过生成器和判别器的对抗训练,GANs实现高质量数据生成。DeepSeek提供强大工具和API,简化GAN的训练与应用。本文介绍如何使用DeepSeek构建、训练GAN,并通过代码示例帮助掌握相关技巧,涵盖模型定义、训练过程及图像生成等环节。
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
42 1
C#集合数据去重的5种方式及其性能对比测试分析
C#集合数据去重的5种方式及其性能对比测试分析
48 11
C#集合数据去重的5种方式及其性能对比测试分析
C#集合数据去重的5种方式及其性能对比测试分析
67 10
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
150 8
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
98 6
接口测试新选择:Postman替代方案全解析
在软件开发中,接口测试工具至关重要。Postman长期占据主导地位,但随着国产工具的崛起,越来越多开发者转向更适合中国市场的替代方案——Apifox。它不仅支持中英文切换、完全免费不限人数,还具备强大的可视化操作、自动生成文档和API调试功能,极大简化了开发流程。
大前端之前端开发接口测试工具postman的使用方法-简单get接口请求测试的使用方法-简单教学一看就会-以实际例子来说明-优雅草卓伊凡
大前端之前端开发接口测试工具postman的使用方法-简单get接口请求测试的使用方法-简单教学一看就会-以实际例子来说明-优雅草卓伊凡
112 10
大前端之前端开发接口测试工具postman的使用方法-简单get接口请求测试的使用方法-简单教学一看就会-以实际例子来说明-优雅草卓伊凡

热门文章

最新文章