聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现

简介: 本文介绍了几种常用的计算机视觉注意力机制及其PyTorch实现,包括SENet、CBAM、BAM、ECA-Net、SA-Net、Polarized Self-Attention、Spatial Group-wise Enhance和Coordinate Attention等,每种方法都附有详细的网络结构说明和实验结果分析。通过这些注意力机制的应用,可以有效提升模型在目标检测任务上的性能。此外,作者还提供了实验数据集的基本情况及baseline模型的选择与实验结果,方便读者理解和复现。

聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现

注意力机制(Attention)是深度学习中常用的tricks,可以在模型原有的基础上直接插入,进一步增强你模型的性能。注意力机制起初是作为自然语言处理中的工作Attention Is All You Need被大家所熟知,从而也引发了一系列的XX is All You Need的论文命题,SENET-Squeeze-and-Excitation Networks是注意力机制在计算机视觉中应用的早期工作之一,并获得了2017年imagenet, 同时也是最后一届Imagenet比赛的冠军,后面就又出现了各种各样的注意力机制,应用在计算机视觉的任务中,今天我们就来一起聊一聊计算机视觉中常用的注意力机制以及他们对应的Pytorch代码实现,另外我还使用这些注意力机制做了一些目标检测的实验,实验效果我也一并放在博客中,大家可以一起对自己感兴趣的部分讨论讨论。

新出的手把手教程,感兴趣的兄弟们快去自己动手试试看!
手把手教你使用YOLOV5训练自己的目标检测模型-口罩检测-视频教程_dejahu的博客-CSDN博客

这里是我数据集的基本情况,这里我使用的是交通标志检测的数据集

CocoDataset Train dataset with number of images 2226, and instance counts: 
+------------+-------+-----------+-------+-----------+-------+-----------------------------+-------+---------------------+-------+
| category   | count | category  | count | category  | count | category                    | count | category            | count |
+------------+-------+-----------+-------+-----------+-------+-----------------------------+-------+---------------------+-------+
| 0 [red_tl] | 1465  | 1 [arr_s] | 1133  | 2 [arr_l] | 638   | 3 [no_driving_mark_allsort] | 622   | 4 [no_parking_mark] | 1142  |
+------------+-------+-----------+-------+-----------+-------+-----------------------------+-------+---------------------+-------+

baseline选择的是fasterrcnn,实验的结果如下:

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.341
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.502
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.400
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.115
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.473
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.655
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.417
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.417
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.417
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.156
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.570
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.726

如果大家遇到论文下载比较慢

推荐使用中科院的 arxiv 镜像: http://xxx.itp.ac.cn, 国内网络能流畅访问
简单直接的方法是, 把要访问 arxiv 链接中的域名从 https://arxiv.org 换成 http://xxx.itp.ac.cn , 比如:

https://arxiv.org/abs/1901.07249 改为 http://xxx.itp.ac.cn/abs/1901.07249

1. SeNet: Squeeze-and-Excitation Attention

论文地址:https://arxiv.org/abs/1709.01507

  • 网络结构

    对通道做注意力机制,通过全连接层对每个通道进行加权。

    image-20211210153628963

    image-20211210153655899

  • Pytorch代码

    ```python
    import numpy as np
    import torch
    from torch import nn
    from torch.nn import init

class SEAttention(nn.Module):

  def __init__(self, channel=512, reduction=16):
      super().__init__()
      self.avg_pool = nn.AdaptiveAvgPool2d(1)
      self.fc = nn.Sequential(
          nn.Linear(channel, channel // reduction, bias=False),
          nn.ReLU(inplace=True),
          nn.Linear(channel // reduction, channel, bias=False),
          nn.Sigmoid()
      )

  def init_weights(self):
      for m in self.modules():
          if isinstance(m, nn.Conv2d):
              init.kaiming_normal_(m.weight, mode='fan_out')
              if m.bias is not None:
                  init.constant_(m.bias, 0)
          elif isinstance(m, nn.BatchNorm2d):
              init.constant_(m.weight, 1)
              init.constant_(m.bias, 0)
          elif isinstance(m, nn.Linear):
              init.normal_(m.weight, std=0.001)
              if m.bias is not None:
                  init.constant_(m.bias, 0)

  def forward(self, x):
      b, c, _, _ = x.size()
      y = self.avg_pool(x).view(b, c)
      y = self.fc(y).view(b, c, 1, 1)
      return x * y.expand_as(x)

if name == 'main':
input = torch.randn(50, 512, 7, 7)
se = SEAttention(channel=512, reduction=8)
output = se(input)
print(output.shape)


* 实验结果

  ```bash
   Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.338
   Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.511
   Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.375
   Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.126
   Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.458
   Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.696
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.411
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.411
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.411
   Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.163
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.551
   Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.758

2. (有用)CBAM: Convolutional Block Attention Module

论文地址:CBAM: Convolutional Block Attention Module

  • 网络结构

    对通道方向上做注意力机制之后再对空间方向上做注意力机制

    image-20211210154323132

  • Pytorch代码

    ```python
    import numpy as np
    import torch
    from torch import nn
    from torch.nn import init

class ChannelAttention(nn.Module):
def init(self, channel, reduction=16):
super().init()
self.maxpool = nn.AdaptiveMaxPool2d(1)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.se = nn.Sequential(
nn.Conv2d(channel, channel // reduction, 1, bias=False),
nn.ReLU(),
nn.Conv2d(channel // reduction, channel, 1, bias=False)
)
self.sigmoid = nn.Sigmoid()

  def forward(self, x):
      max_result = self.maxpool(x)
      avg_result = self.avgpool(x)
      max_out = self.se(max_result)
      avg_out = self.se(avg_result)
      output = self.sigmoid(max_out + avg_out)
      return output

class SpatialAttention(nn.Module):
def init(self, kernel_size=7):
super().init()
self.conv = nn.Conv2d(2, 1, kernel_size=kernel_size, padding=kernel_size // 2)
self.sigmoid = nn.Sigmoid()

  def forward(self, x):
      max_result, _ = torch.max(x, dim=1, keepdim=True)
      avg_result = torch.mean(x, dim=1, keepdim=True)
      result = torch.cat([max_result, avg_result], 1)
      output = self.conv(result)
      output = self.sigmoid(output)
      return output

class CBAMBlock(nn.Module):

  def __init__(self, channel=512, reduction=16, kernel_size=49):
      super().__init__()
      self.ca = ChannelAttention(channel=channel, reduction=reduction)
      self.sa = SpatialAttention(kernel_size=kernel_size)

  def init_weights(self):
      for m in self.modules():
          if isinstance(m, nn.Conv2d):
              init.kaiming_normal_(m.weight, mode='fan_out')
              if m.bias is not None:
                  init.constant_(m.bias, 0)
          elif isinstance(m, nn.BatchNorm2d):
              init.constant_(m.weight, 1)
              init.constant_(m.bias, 0)
          elif isinstance(m, nn.Linear):
              init.normal_(m.weight, std=0.001)
              if m.bias is not None:
                  init.constant_(m.bias, 0)

  def forward(self, x):
      b, c, _, _ = x.size()
      residual = x
      out = x * self.ca(x)
      out = out * self.sa(out)
      return out + residual

if name == 'main':
input = torch.randn(50, 512, 7, 7)
kernel_size = input.shape[2]
cbam = CBAMBlock(channel=512, reduction=16, kernel_size=kernel_size)
output = cbam(input)
print(output.shape)


* 实验结果

  ```bash
   Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.364
   Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.544
   Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.425
   Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.137
   Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.499
   Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.674
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.439
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.439
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.439
   Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.185
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.590
   Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.755

3. BAM: Bottleneck Attention Module

论文地址:https://arxiv.org/pdf/1807.06514.pdf

  • 网络结构

    image-20211217103020590

  • Pytorch代码

    ```python
    import numpy as np
    import torch
    from torch import nn
    from torch.nn import init

class Flatten(nn.Module):
def forward(self, x):
return x.view(x.shape[0], -1)

class ChannelAttention(nn.Module):
def init(self, channel, reduction=16, num_layers=3):
super().init()
self.avgpool = nn.AdaptiveAvgPool2d(1)
gate_channels = [channel]
gate_channels += [channel // reduction] * num_layers
gate_channels += [channel]

      self.ca = nn.Sequential()
      self.ca.add_module('flatten', Flatten())
      for i in range(len(gate_channels) - 2):
          self.ca.add_module('fc%d' % i, nn.Linear(gate_channels[i], gate_channels[i + 1]))
          self.ca.add_module('bn%d' % i, nn.BatchNorm1d(gate_channels[i + 1]))
          self.ca.add_module('relu%d' % i, nn.ReLU())
      self.ca.add_module('last_fc', nn.Linear(gate_channels[-2], gate_channels[-1]))

  def forward(self, x):
      res = self.avgpool(x)
      res = self.ca(res)
      res = res.unsqueeze(-1).unsqueeze(-1).expand_as(x)
      return res

class SpatialAttention(nn.Module):
def init(self, channel, reduction=16, num_layers=3, dia_val=2):
super().init()
self.sa = nn.Sequential()
self.sa.add_module('conv_reduce1',
nn.Conv2d(kernel_size=1, in_channels=channel, out_channels=channel // reduction))
self.sa.add_module('bn_reduce1', nn.BatchNorm2d(channel // reduction))
self.sa.add_module('relu_reduce1', nn.ReLU())
for i in range(num_layers):
self.sa.addmodule('conv%d' % i, nn.Conv2d(kernel_size=3, in_channels=channel // reduction,
out_channels=channel // reduction, padding=1, dilation=dia_val))
self.sa.addmodule('bn%d' % i, nn.BatchNorm2d(channel // reduction))
self.sa.addmodule('relu%d' % i, nn.ReLU())
self.sa.add_module('last_conv', nn.Conv2d(channel // reduction, 1, kernel_size=1))

  def forward(self, x):
      res = self.sa(x)
      res = res.expand_as(x)
      return res

class BAMBlock(nn.Module):

  def __init__(self, channel=512, reduction=16, dia_val=2):
      super().__init__()
      self.ca = ChannelAttention(channel=channel, reduction=reduction)
      self.sa = SpatialAttention(channel=channel, reduction=reduction, dia_val=dia_val)
      self.sigmoid = nn.Sigmoid()

  def init_weights(self):
      for m in self.modules():
          if isinstance(m, nn.Conv2d):
              init.kaiming_normal_(m.weight, mode='fan_out')
              if m.bias is not None:
                  init.constant_(m.bias, 0)
          elif isinstance(m, nn.BatchNorm2d):
              init.constant_(m.weight, 1)
              init.constant_(m.bias, 0)
          elif isinstance(m, nn.Linear):
              init.normal_(m.weight, std=0.001)
              if m.bias is not None:
                  init.constant_(m.bias, 0)

  def forward(self, x):
      b, c, _, _ = x.size()
      sa_out = self.sa(x)
      ca_out = self.ca(x)
      weight = self.sigmoid(sa_out + ca_out)
      out = (1 + weight) * x
      return out

if name == 'main':
input = torch.randn(50, 512, 7, 7)
bam = BAMBlock(channel=512, reduction=16, dia_val=2)
output = bam(input)
print(output.shape)




* 实验结果


## 4. (有用)ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks

> 论文地址:https://arxiv.org/pdf/1910.03151.pdf

* 网络结构

  ![image-20211217105517345](https://i-blog.csdnimg.cn/blog_migrate/70c7234711b60959b0aa394f7bdb08a8.png)

* Pytorch代码

  ```python
  import numpy as np
  import torch
  from torch import nn
  from torch.nn import init
  from collections import OrderedDict


  class ECAAttention(nn.Module):

      def __init__(self, kernel_size=3):
          super().__init__()
          self.gap = nn.AdaptiveAvgPool2d(1)
          self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2)
          self.sigmoid = nn.Sigmoid()

      def init_weights(self):
          for m in self.modules():
              if isinstance(m, nn.Conv2d):
                  init.kaiming_normal_(m.weight, mode='fan_out')
                  if m.bias is not None:
                      init.constant_(m.bias, 0)
              elif isinstance(m, nn.BatchNorm2d):
                  init.constant_(m.weight, 1)
                  init.constant_(m.bias, 0)
              elif isinstance(m, nn.Linear):
                  init.normal_(m.weight, std=0.001)
                  if m.bias is not None:
                      init.constant_(m.bias, 0)

      def forward(self, x):
          y = self.gap(x)  # bs,c,1,1
          y = y.squeeze(-1).permute(0, 2, 1)  # bs,1,c
          y = self.conv(y)  # bs,1,c
          y = self.sigmoid(y)  # bs,1,c
          y = y.permute(0, 2, 1).unsqueeze(-1)  # bs,c,1,1
          return x * y.expand_as(x)


  if __name__ == '__main__':
      input = torch.randn(50, 512, 7, 7)
      eca = ECAAttention(kernel_size=3)
      output = eca(input)
      print(output.shape)
  • 实验结果

    2021-12-17 12:18:08,911 - mmdet - INFO - 
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.360
     Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.545
     Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.414
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.141
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.489
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.676
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.432
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.432
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.432
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.184
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.576
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.748
    

5. SA-NET: SHUFFLE ATTENTION FOR DEEP CONVOLUTIONAL NEURAL NETWORKS

论文地址:https://arxiv.org/pdf/2102.00240.pdf

  • 网络结构

    image-20211217105138064

  • Pytorch代码

    ```python
    import numpy as np
    import torch
    from torch import nn
    from torch.nn import init
    from torch.nn.parameter import Parameter

class ShuffleAttention(nn.Module):

  def __init__(self, channel=512, reduction=16, G=8):
      super().__init__()
      self.G = G
      self.channel = channel
      self.avg_pool = nn.AdaptiveAvgPool2d(1)
      self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))
      self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
      self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
      self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
      self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
      self.sigmoid = nn.Sigmoid()

  def init_weights(self):
      for m in self.modules():
          if isinstance(m, nn.Conv2d):
              init.kaiming_normal_(m.weight, mode='fan_out')
              if m.bias is not None:
                  init.constant_(m.bias, 0)
          elif isinstance(m, nn.BatchNorm2d):
              init.constant_(m.weight, 1)
              init.constant_(m.bias, 0)
          elif isinstance(m, nn.Linear):
              init.normal_(m.weight, std=0.001)
              if m.bias is not None:
                  init.constant_(m.bias, 0)

  @staticmethod
  def channel_shuffle(x, groups):
      b, c, h, w = x.shape
      x = x.reshape(b, groups, -1, h, w)
      x = x.permute(0, 2, 1, 3, 4)

      # flatten
      x = x.reshape(b, -1, h, w)

      return x

  def forward(self, x):
      b, c, h, w = x.size()
      # group into subfeatures
      x = x.view(b * self.G, -1, h, w)  # bs*G,c//G,h,w

      # channel_split
      x_0, x_1 = x.chunk(2, dim=1)  # bs*G,c//(2*G),h,w

      # channel attention
      x_channel = self.avg_pool(x_0)  # bs*G,c//(2*G),1,1
      x_channel = self.cweight * x_channel + self.cbias  # bs*G,c//(2*G),1,1
      x_channel = x_0 * self.sigmoid(x_channel)

      # spatial attention
      x_spatial = self.gn(x_1)  # bs*G,c//(2*G),h,w
      x_spatial = self.sweight * x_spatial + self.sbias  # bs*G,c//(2*G),h,w
      x_spatial = x_1 * self.sigmoid(x_spatial)  # bs*G,c//(2*G),h,w

      # concatenate along channel axis
      out = torch.cat([x_channel, x_spatial], dim=1)  # bs*G,c//G,h,w
      out = out.contiguous().view(b, -1, h, w)

      # channel shuffle
      out = self.channel_shuffle(out, 2)
      return out

if name == 'main':
input = torch.randn(50, 512, 7, 7)
se = ShuffleAttention(channel=512, G=8)
output = se(input)
print(output.shape)


* 实验结果

  ```bash
   Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.350
   Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.523
   Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.401
   Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.123
   Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.479
   Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.662
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.424
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.424
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.424
   Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.160
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.576
   Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.733

6. Polarized Self-Attention: Towards High-quality Pixel-wise Regression

论文地址:https://arxiv.org/abs/2107.00782

  • 网络结构

    image-20211217105853958

  • Pytorch代码

    ```python
    import numpy as np
    import torch
    from torch import nn
    from torch.nn import init

class ParallelPolarizedSelfAttention(nn.Module):

  def __init__(self, channel=512):
      super().__init__()
      self.ch_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
      self.ch_wq = nn.Conv2d(channel, 1, kernel_size=(1, 1))
      self.softmax_channel = nn.Softmax(1)
      self.softmax_spatial = nn.Softmax(-1)
      self.ch_wz = nn.Conv2d(channel // 2, channel, kernel_size=(1, 1))
      self.ln = nn.LayerNorm(channel)
      self.sigmoid = nn.Sigmoid()
      self.sp_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
      self.sp_wq = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
      self.agp = nn.AdaptiveAvgPool2d((1, 1))

  def forward(self, x):
      b, c, h, w = x.size()

      # Channel-only Self-Attention
      channel_wv = self.ch_wv(x)  # bs,c//2,h,w
      channel_wq = self.ch_wq(x)  # bs,1,h,w
      channel_wv = channel_wv.reshape(b, c // 2, -1)  # bs,c//2,h*w
      channel_wq = channel_wq.reshape(b, -1, 1)  # bs,h*w,1
      channel_wq = self.softmax_channel(channel_wq)
      channel_wz = torch.matmul(channel_wv, channel_wq).unsqueeze(-1)  # bs,c//2,1,1
      channel_weight = self.sigmoid(self.ln(self.ch_wz(channel_wz).reshape(b, c, 1).permute(0, 2, 1))).permute(0, 2,
                                                                                                               1).reshape(
          b, c, 1, 1)  # bs,c,1,1
      channel_out = channel_weight * x

      # Spatial-only Self-Attention
      spatial_wv = self.sp_wv(x)  # bs,c//2,h,w
      spatial_wq = self.sp_wq(x)  # bs,c//2,h,w
      spatial_wq = self.agp(spatial_wq)  # bs,c//2,1,1
      spatial_wv = spatial_wv.reshape(b, c // 2, -1)  # bs,c//2,h*w
      spatial_wq = spatial_wq.permute(0, 2, 3, 1).reshape(b, 1, c // 2)  # bs,1,c//2
      spatial_wq = self.softmax_spatial(spatial_wq)
      spatial_wz = torch.matmul(spatial_wq, spatial_wv)  # bs,1,h*w
      spatial_weight = self.sigmoid(spatial_wz.reshape(b, 1, h, w))  # bs,1,h,w
      spatial_out = spatial_weight * x
      out = spatial_out + channel_out
      return out

class SequentialPolarizedSelfAttention(nn.Module):

  def __init__(self, channel=512):
      super().__init__()
      self.ch_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
      self.ch_wq = nn.Conv2d(channel, 1, kernel_size=(1, 1))
      self.softmax_channel = nn.Softmax(1)
      self.softmax_spatial = nn.Softmax(-1)
      self.ch_wz = nn.Conv2d(channel // 2, channel, kernel_size=(1, 1))
      self.ln = nn.LayerNorm(channel)
      self.sigmoid = nn.Sigmoid()
      self.sp_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
      self.sp_wq = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
      self.agp = nn.AdaptiveAvgPool2d((1, 1))

  def forward(self, x):
      b, c, h, w = x.size()

      # Channel-only Self-Attention
      channel_wv = self.ch_wv(x)  # bs,c//2,h,w
      channel_wq = self.ch_wq(x)  # bs,1,h,w
      channel_wv = channel_wv.reshape(b, c // 2, -1)  # bs,c//2,h*w
      channel_wq = channel_wq.reshape(b, -1, 1)  # bs,h*w,1
      channel_wq = self.softmax_channel(channel_wq)
      channel_wz = torch.matmul(channel_wv, channel_wq).unsqueeze(-1)  # bs,c//2,1,1
      channel_weight = self.sigmoid(self.ln(self.ch_wz(channel_wz).reshape(b, c, 1).permute(0, 2, 1))).permute(0, 2,
                                                                                                               1).reshape(
          b, c, 1, 1)  # bs,c,1,1
      channel_out = channel_weight * x

      # Spatial-only Self-Attention
      spatial_wv = self.sp_wv(channel_out)  # bs,c//2,h,w
      spatial_wq = self.sp_wq(channel_out)  # bs,c//2,h,w
      spatial_wq = self.agp(spatial_wq)  # bs,c//2,1,1
      spatial_wv = spatial_wv.reshape(b, c // 2, -1)  # bs,c//2,h*w
      spatial_wq = spatial_wq.permute(0, 2, 3, 1).reshape(b, 1, c // 2)  # bs,1,c//2
      spatial_wq = self.softmax_spatial(spatial_wq)
      spatial_wz = torch.matmul(spatial_wq, spatial_wv)  # bs,1,h*w
      spatial_weight = self.sigmoid(spatial_wz.reshape(b, 1, h, w))  # bs,1,h,w
      spatial_out = spatial_weight * channel_out
      return spatial_out

if name == 'main':
input = torch.randn(1, 512, 7, 7)
psa = SequentialPolarizedSelfAttention(channel=512)
output = psa(input)
print(output.shape)


* 实验结果

  ```bash
  2021-12-16 20:30:36,981 - mmdet - INFO - 
   Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.346
   Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.522
   Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.385
   Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.123
   Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.474
   Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.676
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.422
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.422
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.422
   Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.170
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.570
   Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.743

7. Spatial Group-wise Enhance: Improving Semantic Feature Learning in Convolutional Networks

论文地址:https://arxiv.org/pdf/1905.09646.pdf

  • 网络结构

    主要是用在语义分割上,所以在检测上的效果一般,没有带来多少提升

    image-20211217112822310

  • Pytorch代码

    ```python
    import numpy as np
    import torch
    from torch import nn
    from torch.nn import init

class SpatialGroupEnhance(nn.Module):

  def __init__(self, groups):
      super().__init__()
      self.groups = groups
      self.avg_pool = nn.AdaptiveAvgPool2d(1)
      self.weight = nn.Parameter(torch.zeros(1, groups, 1, 1))
      self.bias = nn.Parameter(torch.zeros(1, groups, 1, 1))
      self.sig = nn.Sigmoid()
      self.init_weights()

  def init_weights(self):
      for m in self.modules():
          if isinstance(m, nn.Conv2d):
              init.kaiming_normal_(m.weight, mode='fan_out')
              if m.bias is not None:
                  init.constant_(m.bias, 0)
          elif isinstance(m, nn.BatchNorm2d):
              init.constant_(m.weight, 1)
              init.constant_(m.bias, 0)
          elif isinstance(m, nn.Linear):
              init.normal_(m.weight, std=0.001)
              if m.bias is not None:
                  init.constant_(m.bias, 0)

  def forward(self, x):
      b, c, h, w = x.shape
      x = x.view(b * self.groups, -1, h, w)  # bs*g,dim//g,h,w
      xn = x * self.avg_pool(x)  # bs*g,dim//g,h,w
      xn = xn.sum(dim=1, keepdim=True)  # bs*g,1,h,w
      t = xn.view(b * self.groups, -1)  # bs*g,h*w

      t = t - t.mean(dim=1, keepdim=True)  # bs*g,h*w
      std = t.std(dim=1, keepdim=True) + 1e-5
      t = t / std  # bs*g,h*w
      t = t.view(b, self.groups, h, w)  # bs,g,h*w

      t = t * self.weight + self.bias  # bs,g,h*w
      t = t.view(b * self.groups, 1, h, w)  # bs*g,1,h*w
      x = x * self.sig(t)
      x = x.view(b, c, h, w)

      return x

if name == 'main':
input = torch.randn(50, 512, 7, 7)
sge = SpatialGroupEnhance(groups=8)
output = sge(input)
print(output.shape)




* 实验结果

  ```bash
  2021-12-16 21:39:42,785 - mmdet - INFO - 
   Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.342
   Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.516
   Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.381
   Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.117
   Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.474
   Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.652
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.415
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.415
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.415
   Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.155
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.565
   Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.718

8. Coordinate Attention for Efficient Mobile Network Design

论文地址:https://arxiv.org/abs/2103.02907

  • 网络结构

    主要应用在轻量级网络上,在resnet系列上效果不好。

    image-20211210155718877

  • Pytorch代码

    ```python
    import torch
    import torch.nn as nn
    import torch.nn.functional as F

class h_sigmoid(nn.Module):
def init(self, inplace=True):
super(h_sigmoid, self).init()
self.relu = nn.ReLU6(inplace=inplace)

  def forward(self, x):
      return self.relu(x + 3) / 6

class h_swish(nn.Module):
def init(self, inplace=True):
super(h_swish, self).init()
self.sigmoid = h_sigmoid(inplace=inplace)

  def forward(self, x):
      return x * self.sigmoid(x)

class CoordAtt(nn.Module):
def init(self, inp, oup, reduction=32):
super(CoordAtt, self).init()
self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
self.pool_w = nn.AdaptiveAvgPool2d((1, None))

      mip = max(8, inp // reduction)

      self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
      self.bn1 = nn.BatchNorm2d(mip)
      self.act = h_swish()

      self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
      self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)

  def forward(self, x):
      identity = x

      n, c, h, w = x.size()
      x_h = self.pool_h(x)
      x_w = self.pool_w(x).permute(0, 1, 3, 2)

      y = torch.cat([x_h, x_w], dim=2)
      y = self.conv1(y)
      y = self.bn1(y)
      y = self.act(y)

      x_h, x_w = torch.split(y, [h, w], dim=2)
      x_w = x_w.permute(0, 1, 3, 2)

      a_h = self.conv_h(x_h).sigmoid()
      a_w = self.conv_w(x_w).sigmoid()

      out = identity * a_w * a_h

      return out

* 实验结果

  ```bash
  2021-12-16 19:04:16,776 - mmdet - INFO - 
   Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.340
   Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.516
   Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.386
   Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.127
   Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.457
   Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.632
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.408
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.408
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.408
   Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.162
   Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.546
   Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.716

9. Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions

论文地址: https://arxiv.org/abs/2112.05561

  • 网络结构

    计算量特别大,效果一般

  • Pytorch代码

    class GAM_Attention(nn.Module):
        def __init__(self, in_channels, out_channels, rate=4):
            super(GAM_Attention, self).__init__()
    
            self.channel_attention = nn.Sequential(
                nn.Linear(in_channels, int(in_channels / rate)),
                nn.ReLU(inplace=True),
                nn.Linear(int(in_channels / rate), in_channels)
            )
    
            self.spatial_attention = nn.Sequential(
                nn.Conv2d(in_channels, int(in_channels / rate), kernel_size=7, padding=3),
                nn.BatchNorm2d(int(in_channels / rate)),
                nn.ReLU(inplace=True),
                nn.Conv2d(int(in_channels / rate), out_channels, kernel_size=7, padding=3),
                nn.BatchNorm2d(out_channels)
            )
    
        def forward(self, x):
            # print(x)
            b, c, h, w = x.shape
            x_permute = x.permute(0, 2, 3, 1).view(b, -1, c)
            x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)
            x_channel_att = x_att_permute.permute(0, 3, 1, 2)
    
            x = x * x_channel_att
    
            x_spatial_att = self.spatial_attention(x).sigmoid()
            out = x * x_spatial_att
            # print(out)
    
            return out
    
  • 实验结果

    2021-12-16 16:14:20,693 - mmdet - INFO - 
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.350
     Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=1000 ] = 0.530
     Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=1000 ] = 0.399
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.131
     Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.481
     Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.683
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.424
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=300 ] = 0.424
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=1000 ] = 0.424
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.171
     Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.575
     Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.745
    

更多注意力

参考:https://github.com/xmu-xiaoma666/External-Attention-pytorch

另外还有一些用在语义分割上面的结构,这里就不测试了,大家可以自行下去测试

双路注意力机制-DANET

论文标题:Fu_Dual_Attention_Network_for_Scene_Segmentation

论文地址:https://openaccess.thecvf.com/content_CVPR_2019/papers/Fu_Dual_Attention_Network_for_Scene_Segmentation_CVPR_2019_paper.pdf

时间:2019

相当于之前是并行的结构,现在改成了串行的结构然后做特征的concat

image-20211210154740171

image-20211210154829462

位置注意力-CCNET

在上面的danet上改的,主要是解决计算量的问题, 通过十字交叉的结构来解决

论文标题:CCNet: Criss-Cross Attention for Semantic Segmentation

论文地址:https://openaccess.thecvf.com/content_ICCV_2019/papers/Huang_CCNet_Criss-Cross_Attention_for_Semantic_Segmentation_ICCV_2019_paper.pdf

时:2019

image-20211210155141717

找到我

你可以通过这些方式来寻找我。

B站:肆十二-

CSDN:肆十二

知乎:肆十二

微博:肆十二-

现在关注以后就是老朋友喽!

image-20211212195912911

目录
相关文章
|
25天前
|
存储 物联网 PyTorch
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
**Torchtune**是由PyTorch团队开发的一个专门用于LLM微调的库。它旨在简化LLM的微调流程,提供了一系列高级API和预置的最佳实践
136 59
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
CNN中的注意力机制综合指南:从理论到Pytorch代码实现
注意力机制已成为深度学习模型的关键组件,尤其在卷积神经网络(CNN)中发挥了重要作用。通过使模型关注输入数据中最相关的部分,注意力机制显著提升了CNN在图像分类、目标检测和语义分割等任务中的表现。本文将详细介绍CNN中的注意力机制,包括其基本概念、不同类型(如通道注意力、空间注意力和混合注意力)以及实际实现方法。此外,还将探讨注意力机制在多个计算机视觉任务中的应用效果及其面临的挑战。无论是图像分类还是医学图像分析,注意力机制都能显著提升模型性能,并在不断发展的深度学习领域中扮演重要角色。
100 10
|
1月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
61 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
1月前
|
计算机视觉 Python
计算机视觉---数字图像代码示例
计算机视觉---数字图像代码示例
47 0
|
2月前
|
人工智能 计算机视觉
AI计算机视觉笔记十五:编写检测的yolov5测试代码
该文为原创文章,如需转载,请注明出处。本文作者在成功运行 `detect.py` 后,因代码难以理解而编写了一个简易测试程序,用于加载YOLOv5模型并检测图像中的对象,特别是“人”类目标。代码实现了从摄像头或图片读取帧、进行颜色转换,并利用YOLOv5进行推理,最后将检测框和置信度绘制在输出图像上,并保存为 `result.jpg`。如果缺少某些模块,可使用 `pip install` 安装。如涉及版权问题或需获取完整代码,请联系作者。
|
4月前
|
机器学习/深度学习 数据采集 自然语言处理
注意力机制中三种掩码技术详解和Pytorch实现
**注意力机制中的掩码在深度学习中至关重要,如Transformer模型所用。掩码类型包括:填充掩码(忽略填充数据)、序列掩码(控制信息流)和前瞻掩码(自回归模型防止窥视未来信息)。通过创建不同掩码,如上三角矩阵,模型能正确处理变长序列并保持序列依赖性。在注意力计算中,掩码修改得分,确保模型学习的有效性。这些技术在现代NLP和序列任务中是核心组件。**
186 12
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
3月前
|
机器学习/深度学习 算法 大数据
【2023年MathorCup高校数学建模挑战赛-大数据竞赛】赛道A:基于计算机视觉的坑洼道路检测和识别 python 代码解析
本文提供了2023年MathorCup高校数学建模挑战赛大数据竞赛赛道A的解决方案,涉及基于计算机视觉的坑洼道路检测和识别任务,包括数据预处理、特征提取、模型建立、训练与评估等步骤的Python代码解析。
77 0
【2023年MathorCup高校数学建模挑战赛-大数据竞赛】赛道A:基于计算机视觉的坑洼道路检测和识别 python 代码解析
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】29.卷积神经网络之GoogLeNet模型介绍及用Pytorch实现GoogLeNet模型【含完整代码】
【从零开始学习深度学习】29.卷积神经网络之GoogLeNet模型介绍及用Pytorch实现GoogLeNet模型【含完整代码】
|
1月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
221 2

热门文章

最新文章

下一篇
无影云桌面