聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
注意力机制(Attention)是深度学习中常用的tricks,可以在模型原有的基础上直接插入,进一步增强你模型的性能。注意力机制起初是作为自然语言处理中的工作Attention Is All You Need被大家所熟知,从而也引发了一系列的XX is All You Need的论文命题,SENET-Squeeze-and-Excitation Networks是注意力机制在计算机视觉中应用的早期工作之一,并获得了2017年imagenet, 同时也是最后一届Imagenet比赛的冠军,后面就又出现了各种各样的注意力机制,应用在计算机视觉的任务中,今天我们就来一起聊一聊计算机视觉中常用的注意力机制以及他们对应的Pytorch代码实现,另外我还使用这些注意力机制做了一些目标检测的实验,实验效果我也一并放在博客中,大家可以一起对自己感兴趣的部分讨论讨论。
新出的手把手教程,感兴趣的兄弟们快去自己动手试试看!手把手教你使用YOLOV5训练自己的目标检测模型-口罩检测-视频教程_dejahu的博客-CSDN博客
这里是我数据集的基本情况,这里我使用的是交通标志检测的数据集
CocoDataset Train dataset with number of images 2226, and instance counts:
+------------+-------+-----------+-------+-----------+-------+-----------------------------+-------+---------------------+-------+
| category | count | category | count | category | count | category | count | category | count |
+------------+-------+-----------+-------+-----------+-------+-----------------------------+-------+---------------------+-------+
| 0 [red_tl] | 1465 | 1 [arr_s] | 1133 | 2 [arr_l] | 638 | 3 [no_driving_mark_allsort] | 622 | 4 [no_parking_mark] | 1142 |
+------------+-------+-----------+-------+-----------+-------+-----------------------------+-------+---------------------+-------+
baseline选择的是fasterrcnn,实验的结果如下:
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.341
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.502
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.400
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.115
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.473
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.655
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.417
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.417
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.417
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.156
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.570
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.726
如果大家遇到论文下载比较慢
推荐使用中科院的 arxiv 镜像: http://xxx.itp.ac.cn
, 国内网络能流畅访问
简单直接的方法是, 把要访问 arxiv 链接中的域名从 https://arxiv.org
换成 http://xxx.itp.ac.cn
, 比如:
从 https://arxiv.org/abs/1901.07249
改为 http://xxx.itp.ac.cn/abs/1901.07249
1. SeNet: Squeeze-and-Excitation Attention
网络结构
对通道做注意力机制,通过全连接层对每个通道进行加权。
Pytorch代码
```python
import numpy as np
import torch
from torch import nn
from torch.nn import init
class SEAttention(nn.Module):
def __init__(self, channel=512, reduction=16):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Sigmoid()
)
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)
if name == 'main':
input = torch.randn(50, 512, 7, 7)
se = SEAttention(channel=512, reduction=8)
output = se(input)
print(output.shape)
* 实验结果
```bash
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.338
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.511
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.375
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.126
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.458
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.696
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.411
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.411
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.411
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.163
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.551
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.758
2. (有用)CBAM: Convolutional Block Attention Module
网络结构
对通道方向上做注意力机制之后再对空间方向上做注意力机制
Pytorch代码
```python
import numpy as np
import torch
from torch import nn
from torch.nn import init
class ChannelAttention(nn.Module):
def init(self, channel, reduction=16):
super().init()
self.maxpool = nn.AdaptiveMaxPool2d(1)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.se = nn.Sequential(
nn.Conv2d(channel, channel // reduction, 1, bias=False),
nn.ReLU(),
nn.Conv2d(channel // reduction, channel, 1, bias=False)
)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
max_result = self.maxpool(x)
avg_result = self.avgpool(x)
max_out = self.se(max_result)
avg_out = self.se(avg_result)
output = self.sigmoid(max_out + avg_out)
return output
class SpatialAttention(nn.Module):
def init(self, kernel_size=7):
super().init()
self.conv = nn.Conv2d(2, 1, kernel_size=kernel_size, padding=kernel_size // 2)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
max_result, _ = torch.max(x, dim=1, keepdim=True)
avg_result = torch.mean(x, dim=1, keepdim=True)
result = torch.cat([max_result, avg_result], 1)
output = self.conv(result)
output = self.sigmoid(output)
return output
class CBAMBlock(nn.Module):
def __init__(self, channel=512, reduction=16, kernel_size=49):
super().__init__()
self.ca = ChannelAttention(channel=channel, reduction=reduction)
self.sa = SpatialAttention(kernel_size=kernel_size)
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
b, c, _, _ = x.size()
residual = x
out = x * self.ca(x)
out = out * self.sa(out)
return out + residual
if name == 'main':
input = torch.randn(50, 512, 7, 7)
kernel_size = input.shape[2]
cbam = CBAMBlock(channel=512, reduction=16, kernel_size=kernel_size)
output = cbam(input)
print(output.shape)
* 实验结果
```bash
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.364
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.544
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.425
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.137
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.499
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.674
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.439
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.439
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.439
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.185
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.590
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.755
3. BAM: Bottleneck Attention Module
网络结构
Pytorch代码
```python
import numpy as np
import torch
from torch import nn
from torch.nn import init
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.shape[0], -1)
class ChannelAttention(nn.Module):
def init(self, channel, reduction=16, num_layers=3):
super().init()
self.avgpool = nn.AdaptiveAvgPool2d(1)
gate_channels = [channel]
gate_channels += [channel // reduction] * num_layers
gate_channels += [channel]
self.ca = nn.Sequential()
self.ca.add_module('flatten', Flatten())
for i in range(len(gate_channels) - 2):
self.ca.add_module('fc%d' % i, nn.Linear(gate_channels[i], gate_channels[i + 1]))
self.ca.add_module('bn%d' % i, nn.BatchNorm1d(gate_channels[i + 1]))
self.ca.add_module('relu%d' % i, nn.ReLU())
self.ca.add_module('last_fc', nn.Linear(gate_channels[-2], gate_channels[-1]))
def forward(self, x):
res = self.avgpool(x)
res = self.ca(res)
res = res.unsqueeze(-1).unsqueeze(-1).expand_as(x)
return res
class SpatialAttention(nn.Module):
def init(self, channel, reduction=16, num_layers=3, dia_val=2):
super().init()
self.sa = nn.Sequential()
self.sa.add_module('conv_reduce1',
nn.Conv2d(kernel_size=1, in_channels=channel, out_channels=channel // reduction))
self.sa.add_module('bn_reduce1', nn.BatchNorm2d(channel // reduction))
self.sa.add_module('relu_reduce1', nn.ReLU())
for i in range(num_layers):
self.sa.addmodule('conv%d' % i, nn.Conv2d(kernel_size=3, in_channels=channel // reduction,
out_channels=channel // reduction, padding=1, dilation=dia_val))
self.sa.addmodule('bn%d' % i, nn.BatchNorm2d(channel // reduction))
self.sa.addmodule('relu%d' % i, nn.ReLU())
self.sa.add_module('last_conv', nn.Conv2d(channel // reduction, 1, kernel_size=1))
def forward(self, x):
res = self.sa(x)
res = res.expand_as(x)
return res
class BAMBlock(nn.Module):
def __init__(self, channel=512, reduction=16, dia_val=2):
super().__init__()
self.ca = ChannelAttention(channel=channel, reduction=reduction)
self.sa = SpatialAttention(channel=channel, reduction=reduction, dia_val=dia_val)
self.sigmoid = nn.Sigmoid()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
b, c, _, _ = x.size()
sa_out = self.sa(x)
ca_out = self.ca(x)
weight = self.sigmoid(sa_out + ca_out)
out = (1 + weight) * x
return out
if name == 'main':
input = torch.randn(50, 512, 7, 7)
bam = BAMBlock(channel=512, reduction=16, dia_val=2)
output = bam(input)
print(output.shape)
* 实验结果
无
## 4. (有用)ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks
> 论文地址:https://arxiv.org/pdf/1910.03151.pdf
* 网络结构
![image-20211217105517345](https://i-blog.csdnimg.cn/blog_migrate/70c7234711b60959b0aa394f7bdb08a8.png)
* Pytorch代码
```python
import numpy as np
import torch
from torch import nn
from torch.nn import init
from collections import OrderedDict
class ECAAttention(nn.Module):
def __init__(self, kernel_size=3):
super().__init__()
self.gap = nn.AdaptiveAvgPool2d(1)
self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=(kernel_size - 1) // 2)
self.sigmoid = nn.Sigmoid()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
y = self.gap(x) # bs,c,1,1
y = y.squeeze(-1).permute(0, 2, 1) # bs,1,c
y = self.conv(y) # bs,1,c
y = self.sigmoid(y) # bs,1,c
y = y.permute(0, 2, 1).unsqueeze(-1) # bs,c,1,1
return x * y.expand_as(x)
if __name__ == '__main__':
input = torch.randn(50, 512, 7, 7)
eca = ECAAttention(kernel_size=3)
output = eca(input)
print(output.shape)
实验结果
2021-12-17 12:18:08,911 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.360 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.545 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.414 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.141 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.489 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.676 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.432 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.432 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.432 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.184 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.576 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.748
5. SA-NET: SHUFFLE ATTENTION FOR DEEP CONVOLUTIONAL NEURAL NETWORKS
网络结构
Pytorch代码
```python
import numpy as np
import torch
from torch import nn
from torch.nn import init
from torch.nn.parameter import Parameter
class ShuffleAttention(nn.Module):
def __init__(self, channel=512, reduction=16, G=8):
super().__init__()
self.G = G
self.channel = channel
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))
self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
self.sigmoid = nn.Sigmoid()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
@staticmethod
def channel_shuffle(x, groups):
b, c, h, w = x.shape
x = x.reshape(b, groups, -1, h, w)
x = x.permute(0, 2, 1, 3, 4)
# flatten
x = x.reshape(b, -1, h, w)
return x
def forward(self, x):
b, c, h, w = x.size()
# group into subfeatures
x = x.view(b * self.G, -1, h, w) # bs*G,c//G,h,w
# channel_split
x_0, x_1 = x.chunk(2, dim=1) # bs*G,c//(2*G),h,w
# channel attention
x_channel = self.avg_pool(x_0) # bs*G,c//(2*G),1,1
x_channel = self.cweight * x_channel + self.cbias # bs*G,c//(2*G),1,1
x_channel = x_0 * self.sigmoid(x_channel)
# spatial attention
x_spatial = self.gn(x_1) # bs*G,c//(2*G),h,w
x_spatial = self.sweight * x_spatial + self.sbias # bs*G,c//(2*G),h,w
x_spatial = x_1 * self.sigmoid(x_spatial) # bs*G,c//(2*G),h,w
# concatenate along channel axis
out = torch.cat([x_channel, x_spatial], dim=1) # bs*G,c//G,h,w
out = out.contiguous().view(b, -1, h, w)
# channel shuffle
out = self.channel_shuffle(out, 2)
return out
if name == 'main':
input = torch.randn(50, 512, 7, 7)
se = ShuffleAttention(channel=512, G=8)
output = se(input)
print(output.shape)
* 实验结果
```bash
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.350
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.523
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.401
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.123
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.479
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.662
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.424
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.424
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.424
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.160
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.576
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.733
6. Polarized Self-Attention: Towards High-quality Pixel-wise Regression
网络结构
Pytorch代码
```python
import numpy as np
import torch
from torch import nn
from torch.nn import init
class ParallelPolarizedSelfAttention(nn.Module):
def __init__(self, channel=512):
super().__init__()
self.ch_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.ch_wq = nn.Conv2d(channel, 1, kernel_size=(1, 1))
self.softmax_channel = nn.Softmax(1)
self.softmax_spatial = nn.Softmax(-1)
self.ch_wz = nn.Conv2d(channel // 2, channel, kernel_size=(1, 1))
self.ln = nn.LayerNorm(channel)
self.sigmoid = nn.Sigmoid()
self.sp_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.sp_wq = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.agp = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
b, c, h, w = x.size()
# Channel-only Self-Attention
channel_wv = self.ch_wv(x) # bs,c//2,h,w
channel_wq = self.ch_wq(x) # bs,1,h,w
channel_wv = channel_wv.reshape(b, c // 2, -1) # bs,c//2,h*w
channel_wq = channel_wq.reshape(b, -1, 1) # bs,h*w,1
channel_wq = self.softmax_channel(channel_wq)
channel_wz = torch.matmul(channel_wv, channel_wq).unsqueeze(-1) # bs,c//2,1,1
channel_weight = self.sigmoid(self.ln(self.ch_wz(channel_wz).reshape(b, c, 1).permute(0, 2, 1))).permute(0, 2,
1).reshape(
b, c, 1, 1) # bs,c,1,1
channel_out = channel_weight * x
# Spatial-only Self-Attention
spatial_wv = self.sp_wv(x) # bs,c//2,h,w
spatial_wq = self.sp_wq(x) # bs,c//2,h,w
spatial_wq = self.agp(spatial_wq) # bs,c//2,1,1
spatial_wv = spatial_wv.reshape(b, c // 2, -1) # bs,c//2,h*w
spatial_wq = spatial_wq.permute(0, 2, 3, 1).reshape(b, 1, c // 2) # bs,1,c//2
spatial_wq = self.softmax_spatial(spatial_wq)
spatial_wz = torch.matmul(spatial_wq, spatial_wv) # bs,1,h*w
spatial_weight = self.sigmoid(spatial_wz.reshape(b, 1, h, w)) # bs,1,h,w
spatial_out = spatial_weight * x
out = spatial_out + channel_out
return out
class SequentialPolarizedSelfAttention(nn.Module):
def __init__(self, channel=512):
super().__init__()
self.ch_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.ch_wq = nn.Conv2d(channel, 1, kernel_size=(1, 1))
self.softmax_channel = nn.Softmax(1)
self.softmax_spatial = nn.Softmax(-1)
self.ch_wz = nn.Conv2d(channel // 2, channel, kernel_size=(1, 1))
self.ln = nn.LayerNorm(channel)
self.sigmoid = nn.Sigmoid()
self.sp_wv = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.sp_wq = nn.Conv2d(channel, channel // 2, kernel_size=(1, 1))
self.agp = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, x):
b, c, h, w = x.size()
# Channel-only Self-Attention
channel_wv = self.ch_wv(x) # bs,c//2,h,w
channel_wq = self.ch_wq(x) # bs,1,h,w
channel_wv = channel_wv.reshape(b, c // 2, -1) # bs,c//2,h*w
channel_wq = channel_wq.reshape(b, -1, 1) # bs,h*w,1
channel_wq = self.softmax_channel(channel_wq)
channel_wz = torch.matmul(channel_wv, channel_wq).unsqueeze(-1) # bs,c//2,1,1
channel_weight = self.sigmoid(self.ln(self.ch_wz(channel_wz).reshape(b, c, 1).permute(0, 2, 1))).permute(0, 2,
1).reshape(
b, c, 1, 1) # bs,c,1,1
channel_out = channel_weight * x
# Spatial-only Self-Attention
spatial_wv = self.sp_wv(channel_out) # bs,c//2,h,w
spatial_wq = self.sp_wq(channel_out) # bs,c//2,h,w
spatial_wq = self.agp(spatial_wq) # bs,c//2,1,1
spatial_wv = spatial_wv.reshape(b, c // 2, -1) # bs,c//2,h*w
spatial_wq = spatial_wq.permute(0, 2, 3, 1).reshape(b, 1, c // 2) # bs,1,c//2
spatial_wq = self.softmax_spatial(spatial_wq)
spatial_wz = torch.matmul(spatial_wq, spatial_wv) # bs,1,h*w
spatial_weight = self.sigmoid(spatial_wz.reshape(b, 1, h, w)) # bs,1,h,w
spatial_out = spatial_weight * channel_out
return spatial_out
if name == 'main':
input = torch.randn(1, 512, 7, 7)
psa = SequentialPolarizedSelfAttention(channel=512)
output = psa(input)
print(output.shape)
* 实验结果
```bash
2021-12-16 20:30:36,981 - mmdet - INFO -
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.346
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.522
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.385
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.123
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.474
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.676
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.422
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.422
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.422
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.170
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.570
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.743
7. Spatial Group-wise Enhance: Improving Semantic Feature Learning in Convolutional Networks
网络结构
主要是用在语义分割上,所以在检测上的效果一般,没有带来多少提升
Pytorch代码
```python
import numpy as np
import torch
from torch import nn
from torch.nn import init
class SpatialGroupEnhance(nn.Module):
def __init__(self, groups):
super().__init__()
self.groups = groups
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.weight = nn.Parameter(torch.zeros(1, groups, 1, 1))
self.bias = nn.Parameter(torch.zeros(1, groups, 1, 1))
self.sig = nn.Sigmoid()
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
b, c, h, w = x.shape
x = x.view(b * self.groups, -1, h, w) # bs*g,dim//g,h,w
xn = x * self.avg_pool(x) # bs*g,dim//g,h,w
xn = xn.sum(dim=1, keepdim=True) # bs*g,1,h,w
t = xn.view(b * self.groups, -1) # bs*g,h*w
t = t - t.mean(dim=1, keepdim=True) # bs*g,h*w
std = t.std(dim=1, keepdim=True) + 1e-5
t = t / std # bs*g,h*w
t = t.view(b, self.groups, h, w) # bs,g,h*w
t = t * self.weight + self.bias # bs,g,h*w
t = t.view(b * self.groups, 1, h, w) # bs*g,1,h*w
x = x * self.sig(t)
x = x.view(b, c, h, w)
return x
if name == 'main':
input = torch.randn(50, 512, 7, 7)
sge = SpatialGroupEnhance(groups=8)
output = sge(input)
print(output.shape)
* 实验结果
```bash
2021-12-16 21:39:42,785 - mmdet - INFO -
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.342
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.516
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.381
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.117
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.474
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.652
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.415
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.415
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.415
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.155
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.565
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.718
8. Coordinate Attention for Efficient Mobile Network Design
网络结构
主要应用在轻量级网络上,在resnet系列上效果不好。
Pytorch代码
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class h_sigmoid(nn.Module):
def init(self, inplace=True):
super(h_sigmoid, self).init()
self.relu = nn.ReLU6(inplace=inplace)
def forward(self, x):
return self.relu(x + 3) / 6
class h_swish(nn.Module):
def init(self, inplace=True):
super(h_swish, self).init()
self.sigmoid = h_sigmoid(inplace=inplace)
def forward(self, x):
return x * self.sigmoid(x)
class CoordAtt(nn.Module):
def init(self, inp, oup, reduction=32):
super(CoordAtt, self).init()
self.pool_h = nn.AdaptiveAvgPool2d((None, 1))
self.pool_w = nn.AdaptiveAvgPool2d((1, None))
mip = max(8, inp // reduction)
self.conv1 = nn.Conv2d(inp, mip, kernel_size=1, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(mip)
self.act = h_swish()
self.conv_h = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
self.conv_w = nn.Conv2d(mip, oup, kernel_size=1, stride=1, padding=0)
def forward(self, x):
identity = x
n, c, h, w = x.size()
x_h = self.pool_h(x)
x_w = self.pool_w(x).permute(0, 1, 3, 2)
y = torch.cat([x_h, x_w], dim=2)
y = self.conv1(y)
y = self.bn1(y)
y = self.act(y)
x_h, x_w = torch.split(y, [h, w], dim=2)
x_w = x_w.permute(0, 1, 3, 2)
a_h = self.conv_h(x_h).sigmoid()
a_w = self.conv_w(x_w).sigmoid()
out = identity * a_w * a_h
return out
* 实验结果
```bash
2021-12-16 19:04:16,776 - mmdet - INFO -
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.340
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.516
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.386
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.127
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.457
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.632
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.408
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.408
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.408
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.162
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.546
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.716
9. Global Attention Mechanism: Retain Information to Enhance Channel-Spatial Interactions
网络结构
计算量特别大,效果一般
Pytorch代码
class GAM_Attention(nn.Module): def __init__(self, in_channels, out_channels, rate=4): super(GAM_Attention, self).__init__() self.channel_attention = nn.Sequential( nn.Linear(in_channels, int(in_channels / rate)), nn.ReLU(inplace=True), nn.Linear(int(in_channels / rate), in_channels) ) self.spatial_attention = nn.Sequential( nn.Conv2d(in_channels, int(in_channels / rate), kernel_size=7, padding=3), nn.BatchNorm2d(int(in_channels / rate)), nn.ReLU(inplace=True), nn.Conv2d(int(in_channels / rate), out_channels, kernel_size=7, padding=3), nn.BatchNorm2d(out_channels) ) def forward(self, x): # print(x) b, c, h, w = x.shape x_permute = x.permute(0, 2, 3, 1).view(b, -1, c) x_att_permute = self.channel_attention(x_permute).view(b, h, w, c) x_channel_att = x_att_permute.permute(0, 3, 1, 2) x = x * x_channel_att x_spatial_att = self.spatial_attention(x).sigmoid() out = x * x_spatial_att # print(out) return out
实验结果
2021-12-16 16:14:20,693 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.350 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.530 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.399 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.131 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.481 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.683 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.424 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.424 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.424 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = 0.171 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.575 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.745
更多注意力
参考:https://github.com/xmu-xiaoma666/External-Attention-pytorch
另外还有一些用在语义分割上面的结构,这里就不测试了,大家可以自行下去测试
双路注意力机制-DANET
论文标题:Fu_Dual_Attention_Network_for_Scene_Segmentation
时间:2019
相当于之前是并行的结构,现在改成了串行的结构然后做特征的concat
位置注意力-CCNET
在上面的danet上改的,主要是解决计算量的问题, 通过十字交叉的结构来解决
论文标题:CCNet: Criss-Cross Attention for Semantic Segmentation
时:2019
找到我
你可以通过这些方式来寻找我。
B站:肆十二-
CSDN:肆十二
知乎:肆十二
微博:肆十二-
现在关注以后就是老朋友喽!