遥感语义分割数据集中的切图策略

简介: 该脚本用于遥感图像的切图处理,支持大尺寸图像按指定大小和步长切割为多个小图,适用于语义分割任务的数据预处理。通过设置剪裁尺寸(cs)和步长(ss),可灵活调整输出图像的数量和大小。此外,脚本还支持标签图像的转换,便于后续模型训练使用。

遥感语义分割数据集中的切图策略

# 切图脚本
import argparse
import glob
import math
import os
import os.path as osp
import tempfile
import zipfile

import mmcv
import numpy as np
from mmengine.utils import ProgressBar, mkdir_or_exist

def clip_big_image(image_path, clip_save_dir, to_label=False):
    # Original image of Vaihingen dataset is very large, thus pre-processing
    # of them is adopted. Given fixed clip size and stride size to generate
    # clipped image, the intersection of width and height is determined.
    # For example, given one 5120 x 5120 original image, the clip size is
    # 512 and stride size is 256, thus it would generate 20x20 = 400 images
    # whose size are all 512x512.
    image = mmcv.imread(image_path)

    h, w, c = image.shape
    cs = 512 # todo 分割的大小
    ss = 256 # todo 分割的步长

    num_rows = math.ceil((h - cs) / ss) if math.ceil(
        (h - cs) / ss) * ss + cs >= h else math.ceil((h - cs) / ss) + 1
    num_cols = math.ceil((w - cs) / ss) if math.ceil(
        (w - cs) / ss) * ss + cs >= w else math.ceil((w - cs) / ss) + 1

    x, y = np.meshgrid(np.arange(num_cols + 1), np.arange(num_rows + 1))
    xmin = x * cs
    ymin = y * cs

    xmin = xmin.ravel()
    ymin = ymin.ravel()
    xmin_offset = np.where(xmin + cs > w, w - xmin - cs, np.zeros_like(xmin))
    ymin_offset = np.where(ymin + cs > h, h - ymin - cs, np.zeros_like(ymin))
    boxes = np.stack([
        xmin + xmin_offset, ymin + ymin_offset,
        np.minimum(xmin + cs, w),
        np.minimum(ymin + cs, h)
    ],
                     axis=1)

    # to_label是用来转化label使用的
    if to_label:
        color_map = np.array([[0, 0, 0], [85, 85, 85]])
        flatten_v = np.matmul(
            image.reshape(-1, c),
            np.array([2, 3, 4]).reshape(3, 1))
        out = np.zeros_like(flatten_v)
        for idx, class_color in enumerate(color_map):
            value_idx = np.matmul(class_color,
                                  np.array([2, 3, 4]).reshape(3, 1))
            out[flatten_v == value_idx] = idx
        image = out.reshape(h, w)

    for box in boxes:
        start_x, start_y, end_x, end_y = box
        clipped_image = image[start_y:end_y,
                              start_x:end_x] if to_label else image[
                                  start_y:end_y, start_x:end_x, :]
        # area_idx = osp.basename(image_path).split('_')[3].strip('.tif')
        # area_idx = osp.basename(image_path).strip('.')
        # print(area_idx)
        # area_idx = osp.basename(image_path).strip('.png')
        mmcv.imwrite(
            clipped_image.astype(np.uint8),
            osp.join(clip_save_dir,
                     # f'{area_idx}_{start_x}_{start_y}_{end_x}_{end_y}.png'))
                     f'img1_{start_x}_{start_y}_{end_x}_{end_y}.png'))

if __name__ == '__main__':
    # 切图搞定,还需要标签转换,和数据集分离
    clip_big_image(image_path="E:/EEEE-COM/toUser/toUser/train/img1/img1.tif", clip_save_dir="E:/EEEE-COM/toUser/toUser/train/split_data/training_images")
    # clip_big_image(image_path="E:/EEEE-COM/toUser/toUser/train/img2/img2.tif", clip_save_dir="E:/EEEE-COM/toUser/toUser/train/split_data/training_images")
    # clip_big_image(image_path="E:/EEEE-COM/toUser/toUser/train/train_labels_png/img1.png", clip_save_dir="E:/EEEE-COM/toUser/toUser/train/split_data/training_labels")
    # clip_big_image(image_path="E:/EEEE-COM/toUser/toUser/train/img2/img2.tif", clip_save_dir="E:/EEEE-COM/toUser/toUser/train/split_data/training_images")
目录
相关文章
|
1月前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
212 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
6月前
|
计算机视觉
论文介绍:像素级分类并非语义分割的唯一选择
【5月更文挑战第24天】论文《像素级分类并非语义分割的唯一选择》提出了MaskFormer模型,该模型通过掩模分类简化语义与实例级分割任务,无需修改模型结构、损失函数或训练过程。在ADE20K和COCO数据集上取得优异性能,显示处理大量类别时的优势。MaskFormer结合像素级、Transformer和分割模块,提高效率和泛化能力。掩模分类方法对比边界框匹配更具效率,且MaskFormer的掩模头设计降低计算成本。该方法为语义分割提供新思路,但实际应用与小物体处理仍有待检验。[链接](https://arxiv.org/abs/2107.06278)
55 3
|
6月前
|
测试技术
Vript:最为详细的视频文本数据集,每个视频片段平均超过140词标注 | 多模态大模型,文生视频
[Vript](https://github.com/mutonix/Vript) 是一个大规模的细粒度视频文本数据集,包含12K个高分辨率视频和400k+片段,以视频脚本形式进行密集注释,每个场景平均有145个单词的标题。除了视觉信息,还转录了画外音,提供额外背景。新发布的Vript-Bench基准包括三个挑战性任务:Vript-CAP(详细视频描述)、Vript-RR(视频推理)和Vript-ERO(事件时序推理),旨在推动视频理解的发展。
133 1
Vript:最为详细的视频文本数据集,每个视频片段平均超过140词标注 | 多模态大模型,文生视频
|
机器学习/深度学习 传感器 编解码
史上最全 | BEV感知算法综述(基于图像/Lidar/多模态数据的3D检测与分割任务)
以视觉为中心的俯视图(BEV)感知最近受到了广泛的关注,因其可以自然地呈现自然场景且对融合更友好。随着深度学习的快速发展,许多新颖的方法尝试解决以视觉为中心的BEV感知,但是目前还缺乏对该领域的综述类文章。本文对以视觉为中心的BEV感知及其扩展的方法进行了全面的综述调研,并提供了深入的分析和结果比较,进一步思考未来可能的研究方向。如下图所示,目前的工作可以根据视角变换分为两大类,即基于几何变换和基于网络变换。前者利用相机的物理原理,以可解释性的方式转换视图。后者则使用神经网络将透视图(PV)投影到BEV上。
史上最全 | BEV感知算法综述(基于图像/Lidar/多模态数据的3D检测与分割任务)
|
6月前
|
数据可视化
cfDNAPro|cfDNA片段数据生物学表征及可视化的R包
cfDNA是指存在于血液中的游离DNA片段,来源于正常和异常细胞的死亡。这些片段长度通常为160-180碱基对,研究cfDNA在非侵入性诊断、疾病监测、早期检测和理解生理及病理状态方面有重要意义。cfDNAPro是一个工具,用于分析cfDNA的片段长度分布,提供数据表征和可视化。它能展示片段长度的整体、中位数和众数,以及峰和谷的分布,还有振荡周期性。通过上图和下图的对比,可以观察到不同队列中cfDNA片段长度的差异。此外,cfDNAPro还能展示DNA片段的模态长度,分析10bp周期性振荡模式,帮助科学家深入了解cfDNA的特征。
120 0
|
6月前
|
机器学习/深度学习 编解码 自动驾驶
【论文速递】WACV2022 - 基于小样本分割的多尺度Non-Novel片段消除方法
【论文速递】WACV2022 - 基于小样本分割的多尺度Non-Novel片段消除方法
|
JSON 算法 数据格式
优化cv2.findContours()函数提取的目标边界点,使语义分割进行远监督辅助标注
可以看到cv2.findContours()函数可以将目标的所有边界点都进行导出来,但是他的点存在一个问题,太过密集,如果我们想将语义分割的结果重新导出成labelme格式的json文件进行修正时,这就会存在点太密集没有办法进行修改,这里展示一个示例:没有对导出的结果进行修正,在labelme中的效果图。
222 0
|
存储 机器学习/深度学习 编解码
使用训练分类网络预处理多分辨率图像
说明如何准备用于读取和预处理可能不适合内存的多分辨率全玻片图像 (WSI) 的数据存储。肿瘤分类的深度学习方法依赖于数字病理学,其中整个组织切片被成像和数字化。生成的 WSI 具有高分辨率,大约为 200,000 x 100,000 像素。WSI 通常以多分辨率格式存储,以促进图像的高效显示、导航和处理。 读取和处理WSI数据。这些对象有助于使用多个分辨率级别,并且不需要将图像加载到核心内存中。此示例演示如何使用较低分辨率的图像数据从较精细的级别有效地准备数据。可以使用处理后的数据来训练分类深度学习网络。
330 0
|
机器学习/深度学习 编解码 算法
图像目标分割_4 DeepLab-V1
相比于传统的视觉算法(SIFT或HOG),Deep-CNN以其end-to-end方式获得了很好的效果。这样的成功部分可以归功于Deep-CNN对图像转换的平移不变性(invariance),这根本是源于重复的池化和下采样组合层。平移不变性增强了对数据分层抽象的能力,但同时可能会阻碍低级(low-level)视觉任务,例如姿态估计、语义分割等,在这些任务中我们倾向于精确的定位而不是抽象的空间关系。
120 0
图像目标分割_4 DeepLab-V1
|
安全 知识图谱
三维点云的开放世界理解,分类、检索、字幕和图像生成样样行
三维点云的开放世界理解,分类、检索、字幕和图像生成样样行
275 0
下一篇
无影云桌面