lintsampler:高效从任意概率分布生成随机样本的新方法

本文涉及的产品
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 在实际应用中,从复杂概率密度函数(PDF)中抽取随机样本的需求非常普遍,涉及统计估计、蒙特卡洛模拟和物理仿真等领域。`lintsampler` 是一个纯 Python 库,旨在高效地从任意概率分布中生成随机样本。它通过线性插值采样算法,简化了复杂分布的采样过程,提供了比传统方法如 MCMC 和拒绝采样更简便和高效的解决方案。`lintsampler` 的设计目标是让用户能够轻松生成高质量的样本,而无需复杂的参数调整。

在实际应用中,我们经常需要从给定的概率密度函数(PDF)中抽取随机样本。这种需求在多个领域都很常见,例如:

  1. 估计统计量
  2. 进行蒙特卡洛模拟
  3. 生成粒子系统用于物理仿真

对于标准概率分布,如均匀分布或高斯分布(正态分布),

numpy
AI 代码解读

scipy
AI 代码解读

生态系统提供了现成的解决方案。通过

numpy.random
AI 代码解读

scipy.stats
AI 代码解读

模块,我们可以方便地生成这些分布的随机样本。

然而,现实世界中的概率分布往往远比标准分布复杂。例如,考虑以下非高斯分布:

图1:非高斯概率密度函数示例。等高线表示等密度线,在对数空间中等间隔分布。

对于这类复杂分布,如何有效地生成随机样本呢?

传统上,有几种广泛使用的方法可以从任意分布中抽样,如拒绝采样法和马尔可夫链蒙特卡洛方法(MCMC)。这些方法都是可靠的技术,并且有一些优秀的Python实现。例如,emcee是一个在科学计算中广泛使用的MCMC采样器。

然而,这些传统方法通常需要复杂的设置和参数调整:

拒绝采样法需要选择合适的提议分布,不当的选择可能导致采样效率极低。

MCMC方法需要关注样本的收敛性,通常需要进行后验分析来评估。

lintsampler
AI 代码解读

是一个纯Python实现的库,能够高效地从任意概率分布中生成随机样本。本问的作者就是

lintsampler
AI 代码解读

的开发者之一。

lintsampler
AI 代码解读

的设计目标就是解决这些问题,提供一种简单高效的采样方法。使用

lintsampler
AI 代码解读

的基本流程如下:

 fromlintsamplerimportLintSampler
 importnumpyasnp

 x=np.linspace(xmin, xmax, ngrid)
 y=np.linspace(ymin, ymax, ngrid)
 sampler=LintSampler((x, y), pdf)
 pts=sampler.sample(N=100000)
AI 代码解读

在这个示例中,我们首先定义了两个维度的网格,然后将网格和概率密度函数

pdf
AI 代码解读

传递给

LintSampler
AI 代码解读

对象。最后,我们使用

sample
AI 代码解读

方法生成了100000个样本点。需要注意的是,这里的

pdf
AI 代码解读

函数并未给出具体定义,完整的示例可以在lintsampler文档中找到。

生成的样本点

pts
AI 代码解读

可以用散点图可视化:

图2:从复杂PDF中抽样得到的点的散点图。背景等高线表示原始PDF。

这个例子展示了

lintsampler
AI 代码解读

使用的简便性。在某些情况下,它比MCMC或拒绝采样方法更快、更高效。

lintsampler的技术实现

如果你对

lintsampler
AI 代码解读

的内部工作机制感兴趣,本节将详细介绍其核心算法。如果你只关注使用方法,可以直接参考官方文档,其中包含了安装指南、使用说明以及多个维度(1D、2D、3D)的示例。文档还介绍了

lintsampler
AI 代码解读

的一些高级功能,如准蒙特卡罗采样(又称低差异序列)和自适应树结构采样。

线性插值采样算法

lintsampler
AI 代码解读

的核心是一种称为线性插值采样的算法,本节将概述其基本原理。

以下示例说明了当您将概率密度函数(PDF)和网格传递给

LintSampler
AI 代码解读

类时,

lintsampler
AI 代码解读

内部的处理流程。我们以二维高斯分布为例,但这种方法适用于任意维度和更复杂的PDF。

  1. 网格评估:首先,在给定的网格上评估PDF。下图展示了一个使用不均匀网格的例子:图3:左:2D高斯PDF。右:在不均匀网格上评估的PDF。(图片来源:作者)![]

  2. 网格单元概率计算:利用梯形法则估计每个网格单元的总概率。计算方法为单元体积乘以其四个角点密度的平均值。

  3. 线性插值近似:在每个网格单元内,使用双线性插值近似PDF:图4:使用双线性插值填充的网格化PDF。![]![]
  1. 高效采样:基于线性近似的PDF可以高效地进行采样。单个样本的生成是一个两步过程:图5:左:随机选择的网格单元。右:在选定单元内采样的点。a. 首先,根据各单元的概率权重随机选择一个网格单元(如左图所示)。b. 然后,使用逆变换采样法在选定的单元内生成一个样本点(如右图所示)。

核心技术要点

线性近似是该算法的关键步骤。通过将每个网格单元内的PDF近似为线性函数,我们可以得到其分位数函数(即逆累积分布函数)的封闭解析形式。这使得逆变换采样可以简化为生成均匀分布的随机数并应用一个代数函数。

实际应用中,用户需要关注的主要参数是网格分辨率,以确保线性近似的精度足够高。适当的分辨率取决于具体的使用场景,

lintsampler
AI 代码解读

文档中的示例笔记本展示了不同情况下的最佳实践。

总结

lintsampler为从复杂概率分布中生成随机样本提供了一种简单、高效的解决方案。它结合了易用性和高性能,适用于广泛的科学计算和数据分析任务。对于需要处理非标准概率分布的研究人员和开发者来说,lintsampler是一个值得考虑的强大工具。

lintsampler主页和文档地址

https://avoid.overfit.cn/post/9731901f70c8460884e46d2f4df4caad

作者:Aneesh Naik

目录
打赏
0
1
1
0
547
分享
相关文章
|
12月前
一个16位的数以4位为一组分割,然后将各部分相加获取最终结果。
一个16位的数以4位为一组分割,然后将各部分相加获取最终结果。
【算法训练-回溯算法 二】【子集组合问题】子集、组合、子集II、组合总和
【算法训练-回溯算法 二】【子集组合问题】子集、组合、子集II、组合总和
112 0
基于特征子空间的高维异常检测:一种高效且可解释的方法
本文探讨了一种替代传统单一检测器的方法,通过构建多个专注于特征子集(子空间)的检测器系统,来提高异常检测的准确性和效率。文章详细介绍了子空间方法在处理高维数据时的优势,包括缓解维度灾难、提高异常检测的可解释性和计算效率。同时,文中还讨论了子空间的选择策略,如基于领域知识、相关性、随机选择等,并介绍了PyOD工具包中实现子空间异常检测的具体方法。通过这些技术,异常检测系统能够更有效地识别数据中的异常记录,尤其是在特征数量众多的情况下。
176 9
基于特征子空间的高维异常检测:一种高效且可解释的方法
【多数组合 数学 字符串】2514. 统计同位异构字符串数目
【多数组合 数学 字符串】2514. 统计同位异构字符串数目
使用 fuzzywuzzy 模块计算两个字符串之间的相似度
使用 fuzzywuzzy 模块计算两个字符串之间的相似度
110 1
深入理解双变量(二元)正态投影:理论基础、直观解释与应用实例
本文探讨了统计学与机器学习中的二元投影技术,它基于二元正态分布,用于预测一个变量在给定另一变量值时的期望值。文章分为三部分:首先介绍了二元正态投影的基本公式及其在回归中的应用;接着通过直观解释和模拟展示了不同相关性下变量间的关系;最后运用投影公式推导出线性回归的参数估计,并通过实例说明其在预测房屋价格等场景中的应用。附录中详细推导了二元线性投影的过程。二元投影作为一种强大工具,在数据分析中帮助简化复杂问题并揭示数据背后的规律。
114 1
深入理解双变量(二元)正态投影:理论基础、直观解释与应用实例
算法提高:计算几何基础 | 判断包含关系
计算几何是计算机科学的一个重要分支,主要研究几何形体的数学描述和计算机描述,在现代工程和数学领域,以及计算机辅助设计、地理信息系统、图形学、机器人技术、超大规模集成电路设计和统计等诸多领域都有重要的用途。在 ACM 竞赛中,出题相对独立,曾出现过与图论、动态规划相结合的题,大多数计算几何问题用程序实现都比较复杂。常用算法包括经典的凸包求解、离散化及扫描线算法、旋转卡壳、半平面交等。本文介绍计算几何常用算法——包含关系。
222 0
概率图推断之变量消除算法
事实证明,推理是一项颇具挑战的任务。对于很多我们感兴趣的概率,要准确回答这些问题都是NP难题。至关重要的是,推理是否容易处理取决于描述概率的图的结构。尽管有些问题很难解决,我们仍然可以通过近似推理方法获得有用的答案。
314 0
概率图推断之变量消除算法
torch中对一个行向量使用sigmoid函数转换成概率,如果这个行向量包含的元素有几千上万个,这可能会导致转换成的概率再抽样效果不好,应该怎么解决这个问题
可以尝试使用softmax函数进行转换,它可以处理具有多个值的行向量,并将其转换为概率分布。另外,可以考虑使用截断技术(如Top-K),减少概率中过小的部分,以提高采样效果。
177 0

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等