目标检测笔记(二):测试YOLOv5各模块的推理速度

简介: 这篇文章是关于如何测试YOLOv5中不同模块(如SPP和SPPF)的推理速度,并通过代码示例展示了如何进行性能分析。

检测YOLOV5的SPP和SPPF和推理性能

from common import SPP,SPPF
import torch.nn as nn
import torch,time,thop

def time_synchronized():
    # pytorch-accurate time
    if torch.cuda.is_available():
        torch.cuda.synchronize()
    return time.time()

def profile(x, ops, n=100, device=None):
    # profile a pytorch module or list of modules. Example usage:
    #     x = torch.randn(16, 3, 640, 640)  # input
    #     m1 = lambda x: x * torch.sigmoid(x)
    #     m2 = nn.SiLU()
    #     profile(x, [m1, m2], n=100)  # profile speed over 100 iterations

    device = device or torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    x = x.to(device)
    x.requires_grad = True
    print(torch.__version__, device.type, torch.cuda.get_device_properties(0) if device.type == 'cuda' else '')
    print(f"\n{'Params':>12s}{'GFLOPS':>12s}{'forward (ms)':>16s}{'backward (ms)':>16s}{'input':>24s}{'output':>24s}")
    for m in ops if isinstance(ops, list) else [ops]:
        m = m.to(device) if hasattr(m, 'to') else m  # device
        m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m  # type
        dtf, dtb, t = 0., 0., [0., 0., 0.]  # dt forward, backward
        try:
            flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2  # GFLOPS
        except:
            flops = 0

        for _ in range(n):
            t[0] = time_synchronized()
            y = m(x)
            t[1] = time_synchronized()
            try:
                _ = y.sum().backward()
                t[2] = time_synchronized()
            except:  # no backward method
                t[2] = float('nan')
            dtf += (t[1] - t[0]) * 1000 / n  # ms per op forward
            dtb += (t[2] - t[1]) * 1000 / n  # ms per op backward

        s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
        s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
        p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0  # parameters
        print(f'{p:12}{flops:12.4g}{dtf:16.4g}{dtb:16.4g}{str(s_in):>24s}{str(s_out):>24s}')

m1 = SPP(1024,1024)
m2 = SPPF(1024,1024)
result = profile(torch.randn(16,1024,64,64),ops=[m1,m2],n=100)
目录
相关文章
|
7月前
|
数据采集 算法 测试技术
【硬件测试】基于FPGA的1024QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的1024QAM基带通信系统的硬件测试版本,包含testbench、高斯信道模块和误码率统计模块。系统新增ila在线数据采集和vio在线SNR设置模块,支持不同SNR条件下的性能测试。1024QAM调制将10比特映射到复平面上的1024个星座点之一,实现高效数据传输。硬件测试结果表明,在SNR=32dB和40dB时,系统表现出良好的性能。Verilog核心程序展示了各模块的连接与功能实现。
162 7
|
5月前
|
人工智能 自然语言处理 测试技术
UGMathBench:评估语言模型数学推理能力的动态基准测试数据集
近年来,人工智能蓬勃发展,自然语言模型(LLM)进展显著。语言模型被广泛应用于自动翻译、智能客服、甚至医疗、金融、天气等领域。而研究者们仍在不断努力,致力于提高语言模型的规模和性能。随着语言模型的蓬勃发展,评估一个语言模型的性能变得越来越重要。其中一个重要的评估指标,就是衡量语言模型的推理能力和解决数学问题的能力。
285 38
|
6月前
|
数据采集 移动开发 算法
【硬件测试】基于FPGA的QPSK调制+软解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于FPGA实现QPSK调制与软解调系统,包含Testbench、高斯信道、误码率统计模块,并支持不同SNR设置。硬件版本新增ILA在线数据采集和VIO在线SNR设置功能,提供无水印完整代码及测试结果。通过VIO分别设置SNR为6dB和12dB,验证系统性能。配套操作视频便于用户快速上手。 理论部分详细解析QPSK调制原理及其软解调实现过程,涵盖信号采样、相位估计、判决与解调等关键步骤。软解调通过概率估计(如最大似然法)提高抗噪能力,核心公式为*d = d_hat / P(d_hat|r[n])*,需考虑噪声对信号点分布的影响。 附Verilog核心程序代码及注释,助力理解与开发。
173 5
|
7月前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的MSK调制解调系统系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于FPGA实现MSK调制解调系统,采用Verilog开发,包含同步模块、高斯信道模拟、误码率统计等功能。相比仿真版本,新增ILA数据采集与VIO在线SNR设置模块。通过硬件测试验证,展示不同SNR(如10dB和16dB)下的性能表现。研究聚焦软件无线电领域,优化算法复杂度以适应硬件限制,利用MSK恒定包络、相位连续等特性提升频谱效率。核心代码实现信号生成、调制解调、滤波及误码统计,提供完整的硬件设计与分析方案。
236 19
|
7月前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的4ASK调制解调通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的4ASK调制解调系统的硬件测试版本,该系统包括testbench、高斯信道模块和误码率统计模块,并新增了ILA在线数据采集和VIO在线SNR设置功能。通过VIO设置不同SNR(如15dB和25dB),实现了对系统性能的实时监测与调整。4ASK是一种通过改变载波幅度表示数据的数字调制方式,适用于多种通信场景。FPGA平台的高效性和灵活性使其成为构建高性能通信系统的理想选择。
167 17
|
7月前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的16QAM调制+软解调系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于之前开发的16QAM调制与软解调系统,增加了硬件测试功能。该系统包含FPGA实现的16QAM调制、软解调、高斯信道、误码率统计模块,并新增了ILA在线数据采集和VIO在线SNR设置模块。通过硬件测试,验证了不同SNR条件下的系统性能。16QAM软解调通过比较接收信号采样值与16个调制点的距离,选择最近的调制点来恢复原始数据。核心Verilog代码实现了整个系统的功能,包括SNR设置、信号处理及误码率统计。硬件测试结果表明系统在不同SNR下表现良好,详细操作步骤可参考配套视频。
185 13
|
7月前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的4FSK调制解调通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文基于之前的文章《基于FPGA的4FSK调制解调系统》,增加了ILA在线数据采集模块和VIO在线SNR设置模块,实现了硬件测试版本。通过VIO设置不同SNR(如10dB和20dB),并展示了ILA采集的数据结果。四频移键控(4FSK)是一种数字调制方法,利用四个不同频率传输二进制数据,具有较高的频带利用率和抗干扰性能。输入的二进制数据分为两组,每组两个比特,对应四个频率f1、f2、f3、f4,分别代表二进制组合00、01、10、11。调制过程中选择相应频率输出,并进行幅度调制以增强抗干扰能力。接收端通过带通滤波器提取信号并还原为原始二进制数据。
143 7
|
8月前
|
存储 数据可视化 测试技术
一个测试工程师的实战笔记:我是如何在Postman和Apipost之间做出选择的?
优秀的API测试工具应该具备: 分层设计:既有可视化操作,也开放代码层深度定制 场景感知:自动识别加密需求推荐处理方案 协议包容:不强迫开发者为了不同协议切换工具 数据主权:允许自主选择数据存储位置
224 7
|
7月前
|
数据采集 算法 数据处理
【硬件测试】基于FPGA的256QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的256QAM基带通信系统的硬件测试版本,包含testbench、高斯信道模块和误码率统计模块。系统新增ila在线数据采集和vio在线SNR设置模块,支持不同信噪比(如30dB和40dB)的仿真测试,并提供配套操作视频。256QAM调制方案每个符号携带8比特信息,通过复数值星座图映射实现高效传输。Verilog代码展示了核心模块设计,包括SNR设置、数据处理和ILA测试分析,确保系统在实际硬件环境中的稳定性和性能。
162 2
|
8月前
|
数据采集 算法 数据安全/隐私保护
【硬件测试】基于FPGA的16QAM基带通信系统开发与硬件片内测试,包含信道模块,误码统计模块,可设置SNR
本文介绍了基于FPGA的16QAM基带通信系统硬件测试版本。该系统在仿真基础上增加了ILA在线数据采集和VIO在线SNR设置模块,支持不同信噪比(如15dB、25dB)的测试。16QAM是一种正交幅度调制方式,通过两路4ASK信号叠加实现,每个符号包含4比特信息。系统采用正交调幅法生成16QAM信号,并通过DAC转换为模拟信号。解调时使用正交相干解调,经低通滤波器恢复电平信号。开发板内完成发射与接收,无需定时同步模块。代码可移植至其他开发板,具体步骤见配套文档。
143 2

热门文章

最新文章