❤️算法笔记❤️-(每日一刷-26、删除有序数组的重复项)

简介: ❤️算法笔记❤️-(每日一刷-26、删除有序数组的重复项)

题目

给你一个 非严格递增排列 的数组 nums ,请你** 原地** 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。

考虑 nums 的唯一元素的数量为 k ,你需要做以下事情确保你的题解可以被通过:

  • 更改数组 nums ,使 nums 的前 k 个元素包含唯一元素,并按照它们最初在 nums 中出现的顺序排列。nums 的其余元素与 nums 的大小不重要。
  • 返回 k

判题标准:

系统会用下面的代码来测试你的题解:

int[] nums = [...]; // 输入数组
int[] expectedNums = [...]; // 长度正确的期望答案
int k = removeDuplicates(nums); // 调用
assert k == expectedNums.length;
for (int i = 0; i < k; i++) {
    assert nums[i] == expectedNums[i];
}

如果所有断言都通过,那么您的题解将被 通过

示例 1:

输入:nums = [1,1,2]
输出:2, nums = [1,2,_]
解释:函数应该返回新的长度 2 ,并且原数组 nums 的前两个元素被修改为 1, 2 。不需要考虑数组中超出新长度后面的元素。

示例 2:

输入:nums = [0,0,1,1,1,2,2,3,3,4]
输出:5, nums = [0,1,2,3,4]
解释:函数应该返回新的长度 5 , 并且原数组 nums 的前五个元素被修改为 0, 1, 2, 3, 4 。不需要考虑数组中超出新长度后面的元素。

提示:

  • 1 <= nums.length <= 3 * 104
  • -104 <= nums[i] <= 104
  • nums 已按 非严格递增 排列

Related Topics

数组

双指针

👍 3511

👎 0

思路

  • 数组双指针-快慢指针法
  • 让快指针走在前面,慢指针走在后面,当fast与slow不相等的时候,就替换他们的值,slow往前一步;相等的时候,fast继续往前走,slow不动。

解法

//给你一个 非严格递增排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现一次 ,返回删除后数组的新长度。元素的 相对顺序 应该保持 
//一致 。然后返回 nums 中唯一元素的个数。 
//
// 考虑 nums 的唯一元素的数量为 k ,你需要做以下事情确保你的题解可以被通过: 
//
// 
// 更改数组 nums ,使 nums 的前 k 个元素包含唯一元素,并按照它们最初在 nums 中出现的顺序排列。nums 的其余元素与 nums 的大小不
//重要。 
// 返回 k 。 
// 
//
// 判题标准: 
//
// 系统会用下面的代码来测试你的题解: 
//
// 
//int[] nums = [...]; // 输入数组
//int[] expectedNums = [...]; // 长度正确的期望答案
//
//int k = removeDuplicates(nums); // 调用
//
//assert k == expectedNums.length;
//for (int i = 0; i < k; i++) {
//    assert nums[i] == expectedNums[i];
//} 
//
// 如果所有断言都通过,那么您的题解将被 通过。 
//
// 
//
// 示例 1: 
//
// 
//输入:nums = [1,1,2]
//输出:2, nums = [1,2,_]
//解释:函数应该返回新的长度 2 ,并且原数组 nums 的前两个元素被修改为 1, 2 。不需要考虑数组中超出新长度后面的元素。
// 
//
// 示例 2: 
//
// 
//输入:nums = [0,0,1,1,1,2,2,3,3,4]
//输出:5, nums = [0,1,2,3,4]
//解释:函数应该返回新的长度 5 , 并且原数组 nums 的前五个元素被修改为 0, 1, 2, 3, 4 。不需要考虑数组中超出新长度后面的元素。
// 
//
// 
//
// 提示: 
//
// 
// 1 <= nums.length <= 3 * 10⁴ 
// -10⁴ <= nums[i] <= 10⁴ 
// nums 已按 非严格递增 排列 
// 
//
// Related Topics 数组 双指针 👍 3511 👎 0
//leetcode submit region begin(Prohibit modification and deletion)
class Solution {
    public int removeDuplicates(int[] nums) {
        if (nums.length==0){
            return 0;
        }
        int slow=0,fast=0;
        while (fast<nums.length){
            if (nums[fast]!=nums[slow]){
                slow++;
                nums[slow]=nums[fast];
            }
            fast++;
        }
        return slow+1;
    }
}
//leetcode submit region end(Prohibit modification and deletion)


目录
打赏
0
0
0
0
42
分享
相关文章
|
5月前
|
❤️算法笔记❤️-(每日一刷-141、环形链表)
❤️算法笔记❤️-(每日一刷-141、环形链表)
76 0
|
5月前
|
【❤️算法笔记❤️】-(每日一刷-876、单链表的中点)
【❤️算法笔记❤️】-(每日一刷-876、单链表的中点)
75 0
人脸识别笔记(一):通过yuface调包(参数量54K更快更小更准的算法) 来实现人脸识别
本文介绍了YuNet系列人脸检测算法的优化和使用,包括YuNet-s和YuNet-n,以及通过yuface库和onnx在不同场景下实现人脸检测的方法。
159 1
|
5月前
|
❤️算法笔记❤️-(每日一刷-160、相交链表)
❤️算法笔记❤️-(每日一刷-160、相交链表)
38 1
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
114 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
Leecode 刷题笔记之可视化六大排序算法:冒泡、快速、归并、插入、选择、桶排序
这篇文章是关于LeetCode刷题笔记,主要介绍了六大排序算法(冒泡、快速、归并、插入、选择、桶排序)的Python实现及其可视化过程。
46 0
|
5月前
|
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
❤️算法笔记❤️-(每日一刷-83、删除排序链表中的重复项)
50 0
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
81 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
基于CS模型和CV模型的多目标协同滤波跟踪算法matlab仿真
本项目基于CS模型和CV模型的多目标协同滤波跟踪算法,旨在提高复杂场景下多个移动目标的跟踪精度和鲁棒性。通过融合目标间的关系和数据关联性,优化跟踪结果。程序在MATLAB2022A上运行,展示了真实轨迹与滤波轨迹的对比、位置及速度误差均值和均方误差等关键指标。核心代码包括对目标轨迹、速度及误差的详细绘图分析,验证了算法的有效性。该算法结合CS模型的初步聚类和CV模型的投票机制,增强了目标状态估计的准确性,尤其适用于遮挡、重叠和快速运动等复杂场景。
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等