面试题:Kafka如何保证高可用?有图有真相

本文涉及的产品
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 面试题:Kafka如何保证高可用?有图有真相

上次面试多次被问到一个问题:

Kafka如何保证高可用的?

「下面来跟大家分享下当时我答到的点」

什么是高可用

「高可用性」,指系统无间断地执行其功能的能力,代表系统的可用性程度

Kafka从0.8版本开始提供了高可用机制,可保障一个或多个Broker宕机后,其他Broker能继续提供服务

备份机制

Kafka允许同一个Partition存在多个消息副本,每个Partition的副本通常由1个Leader及0个以上的Follower组成,生产者将消息直接发往对应Partition的Leader,Follower会周期地向Leader发送同步请求

同一Partition的Replica不应存储在同一个Broker上,因为一旦该Broker宕机,对应Partition的所有Replica都无法工作,这就达不到高可用的效果

所以Kafka会尽量将所有的Partition以及各Partition的副本均匀地分配到整个集群的各个Broker上

「如下图举个例子:」

ISR机制

「ISR 副本集合」

ISR 中的副本都是与 Leader 同步的副本,相反,不在 ISR 中的追随者副本就被认为是与 Leader 不同步的

这里的保持同步不是指与Leader数据保持完全一致,只需在replica.lag.time.max.ms时间内与Leader保持有效连接

Follower周期性地向Leader发送FetchRequest请求,发送时间间隔配置在replica.fetch.wait.max.ms中,默认值为500

public class FetchRequest {
    private final short versionId;
    private final int correlationId;
    private final String clientId;
    private final int replicaId;
    private final int maxWait;    // Follower容忍的最大等待时间: 到点Leader立即返回结果,默认值500
    private final int minBytes;   // Follower容忍的最小返回数据大小:当Leader有足够数据时立即返回,兜底等待maxWait返回,默认值1
    private final Map<TopicAndPartition, PartitionFetchInfo> requestInfo;  // Follower中各Partititon对应的LEO及获取数量
}

各Partition的Leader负责维护ISR列表并将ISR的变更同步至ZooKeeper,被移出ISR的Follower会继续向Leader发FetchRequest请求,试图再次跟上Leader重新进入ISR

ISR中所有副本都跟上了Leader,通常只有ISR里的成员才可能被选为Leader

「Unclean领导者选举」

当Kafka中unclean.leader.election.enable配置为true(默认值为false)且ISR中所有副本均宕机的情况下,才允许ISR外的副本被选为Leader,此时会丢失部分已应答的数据

开启 Unclean 领导者选举可能会造成数据丢失,但好处是,它使得分区 Leader 副本一直存在,不至于停止对外提供服务,因此提升了高可用性,反之,禁止 Unclean 领导者选举的好处在于维护了数据的一致性,避免了消息丢失,但牺牲了高可用性

ACK机制

生产者发送消息中包含acks字段,该字段代表Leader应答生产者前Leader收到的应答数

  • 「acks=0」

生产者无需等待服务端的任何确认,消息被添加到生产者套接字缓冲区后就视为已发送,因此acks=0不能保证服务端已收到消息

  • 「acks=1」

只要 Partition Leader 接收到消息而且写入本地磁盘了,就认为成功了,不管它其他的 Follower 有没有同步过去这条消息了

  • 「acks=all」

Leader将等待ISR中的所有副本确认后再做出应答,因此只要ISR中任何一个副本还存活着,这条应答过的消息就不会丢失

acks=all是可用性最高的选择,但等待Follower应答引入了额外的响应时间。Leader需要等待ISR中所有副本做出应答,此时响应时间取决于ISR中最慢的那台机器

如果说 Partition Leader 刚接收到了消息,但是结果 Follower 没有收到消息,此时 Leader 宕机了,那么客户端会感知到这个消息没发送成功,他会重试再次发送消息过去

Broker有个配置项min.insync.replicas(默认值为1)代表了正常写入生产者数据所需要的最少ISR个数

当ISR中的副本数量小于min.insync.replicas时,Leader停止写入生产者生产的消息,并向生产者抛出NotEnoughReplicas异常,阻塞等待更多的Follower赶上并重新进入ISR

被Leader应答的消息都至少有min.insync.replicas个副本,因此能够容忍min.insync.replicas-1个副本同时宕机

「结论:」

发送的acks=1和0消息会出现丢失情况,为不丢失消息可配置生产者acks=all & min.insync.replicas >= 2

故障恢复机制

「Kafka从0.8版本开始引入了一套Leader选举及失败恢复机制」

首先需要在集群所有Broker中选出一个Controller,负责各Partition的Leader选举以及Replica的重新分配

  • 当出现Leader故障后,Controller会将Leader/Follower的变动通知到需为此作出响应的Broker。

Kafka使用ZooKeeper存储Broker、Topic等状态数据,Kafka集群中的Controller和Broker会在ZooKeeper指定节点上注册Watcher(事件监听器),以便在特定事件触发时,由ZooKeeper将事件通知到对应Broker

Broker

「当Broker发生故障后,由Controller负责选举受影响Partition的新Leader并通知到相关Broker」

  • 当Broker出现故障与ZooKeeper断开连接后,该Broker在ZooKeeper对应的znode会自动被删除,ZooKeeper会触发Controller注册在该节点的Watcher;
  • Controller从ZooKeeper的/brokers/ids节点上获取宕机Broker上的所有Partition;
  • Controller再从ZooKeeper的/brokers/topics获取所有Partition当前的ISR;
  • 对于宕机Broker是Leader的Partition,Controller从ISR中选择幸存的Broker作为新Leader;
  • 最后Controller通过LeaderAndIsrRequest请求向的Broker发送LeaderAndISRRequest请求。

Controller

集群中的Controller也会出现故障,因此Kafka让所有Broker都在ZooKeeper的Controller节点上注册一个Watcher

Controller发生故障时对应的Controller临时节点会自动删除,此时注册在其上的Watcher会被触发,所有活着的Broker都会去竞选成为新的Controller(即创建新的Controller节点,由ZooKeeper保证只会有一个创建成功)

竞选成功者即为新的Controller

最后

文章内容收录到个人网站,方便阅读hardyfish.top/

「写文章画图不易,喜欢的话,希望帮忙点赞,转发下哈,谢谢」

参考文档:

  • Apache Zookeeper
  • Apache Kafka
相关文章
|
2月前
|
消息中间件 存储 缓存
大厂面试高频:Kafka 工作原理 ( 详细图解 )
本文详细解析了 Kafka 的核心架构和实现原理,消息中间件是亿级互联网架构的基石,大厂面试高频,非常重要,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:Kafka 工作原理 ( 详细图解 )
|
5月前
|
消息中间件 存储 负载均衡
Kafka面试题及答案
Kafka面试题及答案
|
2月前
|
消息中间件 大数据 Kafka
大厂面试高频:Kafka、RocketMQ、RabbitMQ 的优劣势比较
本文深入探讨了消息队列的核心概念、应用场景及Kafka、RocketMQ、RabbitMQ的优劣势比较,大厂面试高频,必知必会,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:Kafka、RocketMQ、RabbitMQ 的优劣势比较
|
3月前
|
消息中间件 存储 缓存
美团面试: Kafka为啥能实现 10Wtps 到100Wtps ?kafka 如何实现零复制 Zero-copy?
40岁老架构师尼恩分享了Kafka如何实现高性能的秘诀,包括零拷贝技术和顺序写。Kafka采用mmap和sendfile两种零拷贝技术,前者用于读写索引文件,后者用于向消费者发送消息,减少数据在用户空间和内核空间间的拷贝次数,提高数据传输效率。此外,Kafka通过顺序写日志文件,避免了磁盘寻道和旋转延迟,进一步提升了写入性能。尼恩还提供了系列技术文章和PDF资料,帮助读者深入理解这些技术,提升面试竞争力。
美团面试: Kafka为啥能实现 10Wtps 到100Wtps ?kafka 如何实现零复制 Zero-copy?
|
5月前
|
消息中间件 算法 Java
面试官:Kafka中的key有什么用?
面试官:Kafka中的key有什么用?
189 3
面试官:Kafka中的key有什么用?
|
5月前
|
运维 监控 容灾
[go 面试] 实现服务高可用的策略和实践
[go 面试] 实现服务高可用的策略和实践
|
6月前
|
消息中间件 Kafka
面试题Kafka问题之Kafka【线上】积压消费如何解决
面试题Kafka问题之Kafka【线上】积压消费如何解决
44 0
|
6月前
|
消息中间件 算法 NoSQL
面试题Kafka问题之Kafka保证系统的可用性如何解决
面试题Kafka问题之Kafka保证系统的可用性如何解决
50 0
|
3月前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
110 1
|
3月前
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
63 1

热门文章

最新文章