深度学习笔记(一): 神经网络之感知机详解

简介: 深度学习笔记(一):探索感知机模型及其在神经网络中的应用。

在这篇文章我们主要了解感知机定义、功能、模型如何去获得损失函数、以及有哪些方法去将损失函数极小化,从而确定模型参数

感知机模型的定义

输入空间由xi(xi(1),xi(2),xi(3)…xi(n))组成,输出空间为{-1, +1},由输入空间到输出空间的映射函数为 f(x)=sign(w·x+b) 称为感知机。其中w是权重向量,b称为偏置,w·x为w和x的内积。sign(x)是符号函数,即:
0
在这里插入图片描述

感知机模型的功能

感知机相当于一种二分类模型,输入为样本的特征向量,输出为样本的类别,取+1和-1。所以我们要得到一个正确的模型,感知器往往会要求数据集本身是线性可分的。
在二维平面上,线性可分意味着能用一条直线将正、负样本分开;
在三维空间中,线性可分意味着能用一个平面将正、负样本分开;
在n维空间中,线性可分意味着能用n-1维超平面将正、负样本分开。 在这里插入图片描述
为了便于计算,我们往往会把线性不可分的样本在某种变换下成为线性可分。如果我们找不到一条直线可以把正负样本划分开那么我们可以通过两条直线来划分它,两者满足我们就说它是正样本,其它的就为负样本。还有一种划分方式,在工业界,人们往往会找一条曲线将其分隔开,但是问题是这条曲线怎么做呢?这就是我们要思考的问题,其实道理也很简单,我们先做一些线性分类器,然后我们在做线性分类器的叠加,形成一个锯齿状的线,而不是一条圆滑的线。总的来说,也就是说通过多个线性的分类器,逐个做组合来完成非线性的分割。
在这里插入图片描述

感知机模型图如下

在这里插入图片描述
从模型可看出,很明显我们要求解w和b,也就是说只有这样我们才能正确的分离所有正负样本的超平面S,那么要如何确定w和b,这就需要一个损失函数,并将损失函数极小化。我们通常采用的方法是梯度下降法来找到最优值,当然后面还会介绍比梯度下降法更好的方法,比如说有Momentum、AdaGrad、Adam。下面是这些方法的介绍(说的挺言简意赅的)
https://blog.csdn.net/m0_51004308/article/details/112614340

损失函数

我觉得这篇博客写的挺好的,这里就借鉴一下这篇大佬写的,下面是他的链接

选择误分类点到超平面 S 的总距离作为损失函数。
首先,找出一个误分类点到超平面的距离
因为输入空间xi(xi(1),xi(2),xi(3)…xi(n))中任一点 x0到超平面S的距离:
在这里插入图片描述
在这里插入图片描述

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
133 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
355 55
|
15天前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
160 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
6天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
48 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
1月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
54 18
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
88 31
|
2月前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
2月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
86 17

热门文章

最新文章