基于FPGA的16PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR

简介: ### 简介本项目采用VIVADO 2019.2进行了十六进制相位移键控(16PSK)算法仿真,结果显示,在SNR=30dB时效果为Tttttttttttttt12,在SNR=20dB时效果为Tttttttttttttt34。系统RTL结构如Tttttttttttttt555555所示。16PSK是一种高效的相位调制技术,能在每个符号时间内传输4比特信息,适用于高速数据传输。其工作原理包括将比特流映射到16个相位状态之一(Tttttttttttttt777777),并通过匹配滤波和决策进行解调。具体Verilog核心程序见完整代码。

1.算法仿真效果
VIVADO2019.2仿真结果如下(完整代码运行后无水印):

设置SNR=30db

8b85a98a56565caa8de8b29f62e64f13_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
ec42c8d724e9cae7c183a9341f61af14_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

设置SNR=20db:

a85db710b5668c92e80024ec53c74914_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
0471c9ac6d3a42d5845386f82b86459b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

系统RTL结构图如下:

8203c427d61e8b9456d843ff5e145615_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
十六进制相位移键控(16PSK, 16-Phase Shift Keying)是一种数字调制技术,它通过改变载波相位来传输信息。16PSK能够在一个符号时间内传输4比特的信息,因此在高速数据传输中得到了广泛应用。

   16PSK是一种相位调制技术,其中载波信号的相位根据要传输的信息发生改变。在16PSK中,一个符号可以表示4比特的信息,即每个符号有16种不同的相位状态。在16PSK中,每个符号可以表示16种不同的相位状态,这16个状态均匀分布在单位圆上,形成一个16点的星座图。每个符号对应于4比特的信息,即:

f59ad3b36d7dbc767504bb7d96e61945_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

    首先,需要将要传输的比特流转换成16个相位状态之一。假设信息比特序列为{bi​},则将每4比特映射到一个相位状态上。映射规则如下:

2d10c773c6a484a97bbd2e1e522d078b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

16PSK的解调过程主要包括匹配滤波和决策两个步骤。

3.Verilog核心程序
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2024/08/05 03:30:02
// Design Name:
// Module Name: TOPS_8PSK
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module TOPS_16PSK(
input i_clk,
input i_clksample,
input i_rst,
input i_dat,
input signed[7:0]i_SNR,
output [3:0]o_ISET,
output signed[15:0]o_I16psk,
output signed[15:0]o_Q16psk,
output signed[15:0]o_Ifir_T,
output signed[15:0]o_Qfir_T,
output signed[31:0]o_mod_T,
output signed[15:0]o_Nmod_T,

output signed[31:0]o_modc_R,
output signed[31:0]o_mods_R,
output signed[31:0]o_Ifir_R,
output signed[31:0]o_Qfir_R,
output [3:0]o_wbits,
output o_bits,
output signed[31:0]o_error_num,
output signed[31:0]o_total_num
);

T16PSK T16PSKU(
.i_clk (i_clk),
.i_clksample(i_clksample),
.i_rst (i_rst),
.i_dat (i_dat),
.o_ISET (o_ISET),
.o_clk_3div(),
.o_I16psk(o_I16psk),
.o_Q16psk(o_Q16psk),
.o_Ifir (o_Ifir_T),
.o_Qfir (o_Qfir_T),
.o_cos (),
.o_sin (),
.o_modc (),
.o_mods (),
.o_mod (o_mod_T)
);

//加入信道
awgns awgns_u(
.i_clk(i_clksample),
.i_rst(i_rst),
.i_SNR(i_SNR), //这个地方可以设置信噪比,数值大小从-10~50,
.i_din(o_mod_T[28:13]),
.o_noise(),
.o_dout(o_Nmod_T)
);

16PSK解调
wire [3:0]o_wbits;
wire o_bits;
R16PSK R16SKU(
.i_clk (i_clk),
.i_clksample(i_clksample),
.i_rst (i_rst),
.o_clk_3div(),
.i_med (o_Nmod_T),
.o_cos (),
.o_sin (),
.o_modc (o_modc_R),
.o_mods (o_mods_R),
.o_Ifir (o_Ifir_R),
.o_Qfir (o_Qfir_R),
.o_wbits(o_wbits),
.o_bits (o_bits)
);

Error_Chech Error_Chech_u1(
.i_clk(i_clk),
.i_rst(i_rst),
.i_trans({~i_dat,1'b1}),
.i_rec({~o_bits,1'b1}),
.o_error_num(o_error_num),
.o_total_num(o_total_num)
);

endmodule
0sj_010m
```

相关文章
|
4天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
16 1
|
25天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
41 4
|
6天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的256QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了256QAM调制解调算法的仿真效果及理论基础。使用Vivado 2019.2进行仿真,分别在SNR为40dB、32dB和24dB下生成星座图,并导入Matlab进行分析。256QAM通过将8比特数据映射到复平面上的256个点,实现高效的数据传输。Verilog核心程序包括调制、信道噪声添加和解调模块,最终统计误码率。
14 0
|
6月前
|
机器学习/深度学习 算法 异构计算
m基于FPGA的多通道FIR滤波器verilog实现,包含testbench测试文件
本文介绍了使用VIVADO 2019.2仿真的多通道FIR滤波器设计。展示了系统RTL结构图,并简述了FIR滤波器的基本理论,包括单通道和多通道的概念、常见结构及设计方法,如窗函数法、频率采样法、优化算法和机器学习方法。此外,还提供了Verilog核心程序代码,用于实现4通道滤波器模块,包含时钟、复位信号及输入输出接口的定义。
170 7
|
25天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
1月前
|
存储 算法 数据处理
基于FPGA的8PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统在原有的8PSK调制解调基础上,新增了高斯信道与误码率统计模块,验证了不同SNR条件下的8PSK性能。VIVADO2019.2仿真结果显示,在SNR分别为30dB、15dB和10dB时,系统表现出不同的误码率和星座图分布。8PSK作为一种高效的相位调制技术,广泛应用于无线通信中。FPGA凭借其高度灵活性和并行处理能力,成为实现此类复杂算法的理想平台。系统RTL结构展示了各模块间的连接与协同工作。
49 16
|
29天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现16QAM调制解调通信系统,使用Verilog语言编写,包括信道模块、误码率统计模块。通过设置不同SNR值(如8dB、12dB、16dB),仿真测试系统的误码性能。项目提供了完整的RTL结构图及操作视频,便于理解和操作。核心程序实现了信号的生成、调制、信道传输、解调及误码统计等功能。
38 3
|
6月前
|
编解码 算法 异构计算
基于FPGA的NC图像质量评估verilog实现,包含testbench和MATLAB辅助验证程序
在Vivado 2019.2和Matlab 2022a中测试的图像质量评估算法展示了效果。该算法基于NC指标,衡量图像与原始图像的相似度,关注分辨率、色彩深度和失真。提供的Verilog代码段用于读取并比较两个BMP文件,计算NC值。
|
6月前
|
算法 异构计算
m基于FPGA的MPPT最大功率跟踪算法verilog实现,包含testbench
该内容包括三部分:1) 展示了Vivado 2019.2和Matlab中关于某种算法的仿真结果图像,可能与太阳能光伏系统的最大功率点跟踪(MPPT)相关。2) 简述了MPPT中的爬山法原理,通过调整光伏电池工作点以找到最大功率输出。3) 提供了一个Verilog程序模块`MPPT_test_tops`,用于测试MPPT算法,其中包含`UI_test`和`MPPT_module_U`两个子模块,处理光伏电流和电压信号。
68 1
|
2月前
|
监控 算法 安全
基于颜色模型和边缘检测的火焰识别FPGA实现,包含testbench和matlab验证程序
本项目展示了基于FPGA的火焰识别算法,可在多种应用场景中实时检测火焰。通过颜色模型与边缘检测技术,结合HSV和YCbCr颜色空间,高效提取火焰特征。使用Vivado 2019.2和Matlab 2022a实现算法,并提供仿真结果与测试样本。FPGA平台充分发挥并行处理优势,实现低延迟高吞吐量的火焰检测。项目包含完整代码及操作视频说明。

热门文章

最新文章