基于粒子群算法的分布式电源配电网重构优化matlab仿真

简介: 本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。

1.课题概述
基于粒子群算法的分布式电源配电网重构优化。通过Matlab仿真,对比优化前后

1.节点的电压值
2.线路的损耗,这里计算网损
3.负荷均衡度
4.电压偏离
5.线路的传输功率
6.重构后和重构前开关变化状态

2.系统仿真结果

0dd9deba8f3dc84ec701654f842e2455_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg


  15.0000 + 0.0000i
  14.9761 + 0.0002i
  14.8564 + 0.0014i
  14.8396 + 0.0000i
  14.8257 - 0.0006i
  14.7965 - 0.0093i
  14.7898 - 0.0164i
  14.3003 - 0.3734i
  14.2857 - 0.3291i
  14.2937 - 0.3099i
  14.2968 - 0.3073i
  14.3781 - 0.4659i
  14.3691 - 0.4669i
  14.2306 - 0.2775i
  14.2385 - 0.2765i
  14.2389 - 0.2553i
  14.2331 - 0.2024i
  14.2325 - 0.1839i
  14.9747 - 0.0003i
  14.4088 - 0.4626i
  14.3907 - 0.4526i
  14.4048 - 0.4598i
  14.7643 - 0.0073i
  14.5812 - 0.0374i
  14.4344 - 0.0587i
  14.7945 - 0.0095i
  14.7931 - 0.0096i
  14.3626 - 0.0771i
  14.3669 - 0.0753i
  14.3191 - 0.0713i
  14.2603 - 0.1246i
  14.2465 - 0.1425i
  14.2405 - 0.1634i

2.线路的损耗,这里计算网损
PLoss0 =

  139.9155
PLoss1 =

   56.7952

损耗降低百分比:

ans =

   59.4075

3.负荷均衡度
ans =

    0.0196

4.电压偏离
ans =

   27.8995

5.线路的传输功率
Powers =

   22.5049
   22.5231
   22.5006
   22.5004
   22.5006
   22.5000
   22.9657
   22.5014
   22.5003
   22.5001
   22.5765
   22.5000
   22.5373
   22.5001
   22.5004
   22.5008
   22.5003
   22.5000
   22.6966
   22.5004
   22.5001
   22.5129
   22.5236
   22.5152
   22.5000
   22.5000
   22.6011
   22.5000
   22.5036
   22.5033
   22.5007
   22.5004
   22.5036
   22.5012
   22.5002
   22.5005
   22.5048

6.重构后和重构前开关变化状态
Switch0 =

     7     1     3     2    16


Switch1 =

     2     4     4     4    15


swicths =

     2     4     4     4    15
     3     5     5     5    16

3.核心程序与模型
版本:MATLAB2017B

plot(objs,'linewidth',2);
xlabel('迭代次数');
ylabel('适应度值');
grid on


%1、节点的电压值
Node_volgates{indxmin2}
%2、线路的损耗,这里计算网损
%重构前
PLoss0 = Loss0(indxmin_,:) 
%重构后
PLoss1 = min(Loss1)
disp('损耗降低百分比:');
100*abs(PLoss0-PLoss1)/PLoss0
%负荷均衡度,这里均衡采用了方差来计算,值越小,均衡度越高
fobj2(indxmin)

%电压偏离
fobj1(indxmin)



%3、线路的传输功率
case33;
Node_voltage = Node_volgates{indxmin2};
for iii = 1:length(Matrix1)
    Powers(iii,1) =  abs((abs(Node_voltage(Matrix1(iii,2))-Node_voltage(Matrix1(iii,3))))^2/(Matrix1(iii,4))+Rz); 
end
Powers
%4、重构后和重构前开关变化状态
%重构前
Switch0 = Best_pso_(indxmin_,:) 
%重构后
Switch1 = Best_pso(indxmin2,:) 

%5、如果出现故障,及一条线路断开之后开关变化状态
%这里进行断开支路测试
for i = 1:Swicth
    swicths(:,i) = [Matrix1(Switch1(i),2:3)]';
end
swicths
02_054m

4.系统原理简介
分布式电源配电网重构(Distribution Network Reconfiguration,DNR)是一个重要的电力系统优化问题,旨在通过改变配电网中的开关状态,以最小化网络损耗、提高供电可靠性和优化分布式电源的接入效益。粒子群优化算法(Particle Swarm Optimization, PSO)作为一种启发式全局优化方法,被广泛应用于解决此类复杂优化问题。

4.1基本PSO算法原理
在PSO中,每个粒子表示配电网重构的一种可能解(即一种开关状态组合),其位置矢量X_i代表第i个粒子所对应的解空间中的解。每个粒子具有速度矢量V_i,用于更新其位置:

ae396ab07e64c292c0257c02ee72f007_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

w是惯性权重,用于平衡全局搜索和局部搜索。
c_1 和 c_2 是加速常数,控制个体最优解(P_i)和全局最优解(G_i)对当前粒子的影响。
r_1 和 r_2 是随机变量,在[0, 1]之间,用于引入随机性。
P_i 是粒子i的历史最优位置(对应最低目标函数值的开关状态组合)。
G 是整个种群中的全局最优位置(所有粒子经历过的最优开关状态组合)。
4.2配电网重构的目标函数
在基于粒子群算法的分布式电源配电网重构优化问题中,目标函数通常结合了多个评价指标以达到综合最优。这里主要考虑以下三个关键因素:

   节点电压偏离(Voltage Deviation) 节点电压偏离反映了配电网络重构后各节点实际电压与额定电压之间的差异。其数学表示通常采用均方误差的形式:

67249aa810931ca0d69f3e6adc7650ef_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,Ui 是第 i 个节点的实际电压,Uref 是参考电压或额定电压,N 是总节点数。

   线路负荷均衡度(Load Balance Index) 线路负荷均衡度衡量的是整个配电网内各线路负载分布的均匀程度。一种可能的度量方法是计算所有线路负荷与其平均值的标准差:

d134092dabfeae40ae999ddccbada9d0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

其中,Pj 表示第 j 条线路的功率负荷,ˉPˉ 是所有线路负荷的平均值,M 是线路总数。

    线路损耗(Line Losses) 线路损耗包括电阻损耗和电抗损耗,在考虑分布式电源接入的情况下,需要根据重构后的网络拓扑结构和运行状态计算总的线路损耗:

2445229a3653a7913783bcf7a3980c34_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

这里,Rj 和Xj 分别为第 j 条线路的电阻和感抗,Ij 是通过该线路的电流。

将上述三个指标整合成一个复合目标函数,可以采用加权和的方式表达:

e570322bcdc849cb8a8c6c92bbb53270_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   粒子群算法则用于求解此复合目标函数的最小化问题,通过不断迭代更新每个粒子(即潜在的网络重构方案)的位置和速度,最终找到一组最优的开关状态组合。
相关文章
|
4天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
12天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
12天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
2月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
4月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
131 2
基于Redis的高可用分布式锁——RedLock
|
4月前
|
缓存 NoSQL Java
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
这篇文章是关于如何在SpringBoot应用中整合Redis并处理分布式场景下的缓存问题,包括缓存穿透、缓存雪崩和缓存击穿。文章详细讨论了在分布式情况下如何添加分布式锁来解决缓存击穿问题,提供了加锁和解锁的实现过程,并展示了使用JMeter进行压力测试来验证锁机制有效性的方法。
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
|
20天前
|
存储 NoSQL Java
使用lock4j-redis-template-spring-boot-starter实现redis分布式锁
通过使用 `lock4j-redis-template-spring-boot-starter`,我们可以轻松实现 Redis 分布式锁,从而解决分布式系统中多个实例并发访问共享资源的问题。合理配置和使用分布式锁,可以有效提高系统的稳定性和数据的一致性。希望本文对你在实际项目中使用 Redis 分布式锁有所帮助。
53 5
|
23天前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
43 8
|
1月前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
57 16
|
1月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
40 5