【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。

近期,阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。

文本到图像合成 (TIS) 已成为计算机视觉与自然语言处理 (NLP) 交叉领域的重要前沿,其能够根据文本描述生成视觉上引人注目的图像。基于文本引导的图像编辑任务使用户能够通过简单的文字描述来指导图像的修改,无需使用复杂的图像编辑软件或具备专业知识即可实现编辑效果。其中 Traing-free 的文本引导图像编辑 (TIE) 已成为一个重要的研究方向,利用预训练的 TIS 模型,直接通过文本提示来编辑图像,用户可以直接输入文本,对图像进行多种编辑操作,包括颜色变化、物体的添加或去除、风格转换等。这种交互式编辑方式显著降低了图像编辑的门槛,使得创意表达变得更加便捷和个性化。
尽管当前的 TIE 算法取得了显著进展,但它们仍存在一些局限性。如图1所示,现有TIE方法在编辑多个对象时面临挑战。多对象编辑的复杂性会导致编辑对象丢失(例如,丢失一个苹果)、属性缺失(例如,斑点)和背景保留不完整等问题。
image.png

图1. 图像编辑的效果对比以及我们提出方法的结果

在本文中,我们提出了 VICTORIA 编辑算法,它利用语言知识来解决在对象场景编辑中因缺失目标(如对象、属性和背景)而导致的问题。VICTORIA 通过分析输入编辑文本中单词之间的依存关系,并将这种关系反映在注意层的中间表示中,从而修正并生成目标图像。图2展示了 VICTORIA 的整体框架。首先,我们通过控制自注意机制来确保原始图像和编辑后图像之间的空间一致性。其次,VICTORIA 分析输入编辑文本中单词之间的依存关系,并在生成目标编辑图像的过程中主动干预交叉注意力图,从而提升目标编辑区域的生成结果。最后,VICTORIA 通过交叉注意图进行图像部分掩码,有效保留原始图像中无需被编辑的区域。
image.png

图 2:VICTORIA 在对图像进行编辑的过程示意图


VICTORIA 伪代码如下:
image.png

图 3:VICTORIA 在合成图像编辑和真实图像编辑场景下的伪代码


图4展示了 VICTORIA 的编辑结果,它成功地修改了原始图像中多个物体的各种属性、风格、场景和类别。
image.png

图 4:VICTORIA 编辑结果示例


图5对比展示了 VICTORIA 与其他一些 SOTA 图像编辑技术的效果。无论是对真实照片还是合成图像,VICTORIA 均展现出了高效的编辑能力。在所有的案例中,VICTORIA 都能够实现与描述提示高度一致的精细编辑,同时最大限度地保留了原图的结构细节。
image.png

图 5:VICTORIA 与其他编辑方法的对比


为了更好地服务开源社区,这一算法的源代码已经贡献在自然语言处理算法框架 EasyNLP 中,欢迎各界从业人员和研究者使用。
阿里云人工智能平台 PAI 长期招聘正式员工/实习生。团队专注于深度学习算法研究与应用,重点聚焦大语言模型和多模态 AIGC 大模型的应用算法研究和应用。简历投递和咨询:chengyu.wcy@alibaba-inc.com。

论文信息

论文名字:Attentive Linguistic Tracking in Diffusion Models for Training-free Text-guided Image Editing

论文作者:刘冰雁、汪诚愚、黄俊、贾奎

论文pdf链接https://openreview.net/pdf?id=efTur2naAS

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
3月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
193 6
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
266 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
1月前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
52 14
|
2月前
|
机器学习/深度学习 自然语言处理 算法
调研180多篇论文,这篇综述终于把大模型做算法设计理清了
《A Systematic Survey on Large Language Models for Algorithm Design》综述了过去三年大型语言模型(LLMs)在算法设计中的应用。LLMs通过自然语言处理技术,助力生成、优化和验证算法,在优化、机器学习、数学推理等领域展现出广泛应用前景。尽管存在资源需求高、结果不确定等挑战,LLMs仍为算法设计带来新机遇。论文地址:https://arxiv.org/abs/2410.14716。
99 14
|
2月前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
91 2
|
3月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
77 1
|
3月前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
3月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
179 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
3月前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
57 0
|
3月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
56 0

热门文章

最新文章

相关产品

  • 人工智能平台 PAI