LinkedIn的工程师详述了生产环境下Kafka的调试和最佳实践

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介:

在本文中,LinkedIn的软件工程师Joel Koshy详细阐述了他和一个工程师团队是如何解决生产环境下Kafka的两次事故的。这两次事故是由于多个产品缺陷、特殊的客户行为以及监控缺失的交错影响导致的。

第一个缺陷是在LinkedIn的变更请求跟踪系统中观察到的,部署平台认为这是从服务发出的重复邮件。Koshy指出,其根本原因是由于消息格式的改变,和随后缓存加载在偏移管理器的终止,而这个偏移管理器已经被设置了一个旧的偏移量。由于这个主题分区上的低数据容量,日志压缩和清除触发器在部署的主题上从来没有被触发过。这导致一个旧的偏移量被当作消费者的起点,同时也使得以前已经消费过的消息被重新读取,并触发了重复的电子邮件。

第二个缺陷是在一个数据部署管道中,它里面的Hadoop推送作业器会发送数据到Kafka的非生产环境,然后通过Kafka集群复制到生产集群。在发现取回的偏移量没有有效检查点的时候,复制就被卡住了。它表明前一个检查的偏移量被丢掉了。Koshy是这样描述根本原因的:

......由于日志压缩进程已经停止一段时间了,有几个较旧的偏移量仍然还在主题中。偏移缓存加载进程已经将它们加载到了缓存中。这本身是没有问题的,因为日志中更多的最新偏移量最终会覆盖那些旧的条目。问题出在旧偏移量的清除进程是在偏移加载的过程中开始的,偏移加载的过程需要较长的时间。旧条目清除之后会在日志末尾追加标记。而与此同时,偏移量的加载过程仍在进行,并会加载最近的偏移量到缓存中,但它只会在看到标记之后才会去除那些条目。这就解释了为什么偏移量实际上被丢失的原因。

Kafka代理之间不清楚首席代理选举的规则,这会导致处于分区的首席代理在完成复制延迟过程中的失败会引起偏移量倒转。Kafka消息的消费者发出读取指定偏移量的请求。消费者会对主题分区检查它们的偏移量,因此它们可以从最后一次检查点(消费者需要重启的点)重新开始。检查可以发生在很多时候,包括消费者失败、重启或者分区被加到主题里以及在消费者实例之间的分区分发规则需要改变的时候。如果一个消费者获取这个代理的主题日志之外的偏移关键字,它会收到OffsetOutOfRange的错误。消费者需要根据它们auto.offset.reset配置,来重新设置它们的偏移为最新或最早的有效偏移。

Koshy指出,

重置为最早的偏移会引起重复消费,而重置为最新的偏移意味着可能会丢失在偏移复位和下一次读取之间已经到达的消息。

Koshy还着重指出一些尽早发现偏移倒回的最佳实践,包括:通过监控集群中模糊不清的首席选举率,基于消费者延迟的监控和告警从而避免误报。监控日志压缩的指标(特别是最大脏读率传感器的),以及偏移管理的指标(如偏移缓存大小、提交率、组数传感器等)。偏移量自己被存在一个可复制、可分区、可压缩的日志中,它们与内部的_consmer_offsets主题相关联。Koshy推荐在调试进程中尽早导出内部主题,从而避免日志压缩删除那些潜在有用的数据。特定的主题由消息组成,任何的时间偏移提交请求都会被发送到偏移管理代理中。在这种情况下,消费者和代理的日志也是可能有用的。
本文转自d1net(转载)

相关文章
|
19天前
|
消息中间件 监控 大数据
优化Apache Kafka性能:最佳实践与调优策略
【10月更文挑战第24天】作为一名已经对Apache Kafka有所了解并有实际使用经验的开发者,我深知在大数据处理和实时数据流传输中,Kafka的重要性不言而喻。然而,在面对日益增长的数据量和业务需求时,如何保证系统的高性能和稳定性成为了摆在我们面前的一个挑战。本文将从我的个人视角出发,分享一些关于如何通过合理的配置和调优来提高Kafka性能的经验和建议。
50 4
|
5月前
|
消息中间件 Java Kafka
springboot整合kafka消费者最佳实践
springboot整合kafka消费者最佳实践
560 1
|
6月前
|
消息中间件 NoSQL Kafka
云原生最佳实践系列 5:基于函数计算 FC 实现阿里云 Kafka 消息内容控制 MongoDB DML 操作
该方案描述了一个大数据ETL流程,其中阿里云Kafka消息根据内容触发函数计算(FC)函数,执行针对MongoDB的增、删、改操作。
|
6月前
|
消息中间件 分布式计算 Java
|
6月前
|
消息中间件 监控 负载均衡
Kafka 最佳实践:构建可靠、高性能的分布式消息系统
Apache Kafka 是一个强大的分布式消息系统,被广泛应用于实时数据流处理和事件驱动架构。为了充分发挥 Kafka 的优势,需要遵循一些最佳实践,确保系统在高负载下稳定运行,数据可靠传递。本文将深入探讨 Kafka 的一些最佳实践,并提供丰富的示例代码,帮助大家更好地应用这一强大的消息系统。
|
6月前
|
消息中间件 存储 监控
深度解析 Kafka 中的 Offset 管理与最佳实践
Kafka 中的 Offset(偏移量)是消息处理的关键元素,对于保证消息传递的可靠性和一致性至关重要。本篇博客将深度解析 Kafka 中的 Offset 管理机制,并提供丰富的示例代码,让你更全面地理解 Offset 的原理、使用方法以及最佳实践。
|
6月前
|
消息中间件 负载均衡 Java
Kafka 消费者 API 指南:深入探讨消费者的实现与最佳实践
Kafka 消费者 API 是连接应用程序与 Kafka 集群之间的关键接口,用于从 Kafka 主题中拉取消息并进行处理。本篇文章将深入探讨 Kafka 消费者 API 的核心概念、用法,以及一些最佳实践,帮助你构建高效、可靠的消息消费系统。
|
6月前
|
消息中间件 Java Kafka
Kafka 生产者 API 指南:深入理解生产者的实现与最佳实践
Kafka 是一个高性能、分布式的消息中间件系统,而其生产者 API 是连接应用程序与 Kafka 集群之间的纽带。本篇博客将深入探讨 Kafka 生产者 API 的核心概念、用法,以及一些最佳实践,帮助你更好地利用 Kafka 构建可靠的消息生产系统。
|
6月前
|
消息中间件 Kafka
Kafka - 3.x Producer 生产者最佳实践
Kafka - 3.x Producer 生产者最佳实践
144 0
|
6月前
|
消息中间件 监控 负载均衡
深入理解 Kafka 集群管理与最佳实践
构建和管理一个稳定、高性能的Kafka集群对于实现可靠的消息传递至关重要。本文将深入研究Kafka集群的各个方面,包括集群搭建、节点配置、分区与副本管理、安全性与监控,为读者提供全面的指导和实例代码。