还在死磕AI咒语?北大-百川搞了个自动提示工程系统PAS

简介: 【10月更文挑战第4天】北京大学和百川智能研究人员开发了一种名为PAS的即插即用自动提示工程(APE)系统,利用高质量数据集训练的大型语言模型(LLMs),在基准测试中取得了显著成果,平均提升了6.09个百分点。PAS仅需9000个数据点即可实现顶尖性能,并能自主生成提示增强数据,提高了灵活性和效率。尽管存在训练数据质量和提示多样性等方面的潜在局限性,PAS仍为解决提示工程挑战提供了有前景的方法,有望提升LLM的可用性和有效性。论文详见:https://arxiv.org/abs/2407.06027。

近年来,随着大型语言模型(LLMs)的崛起,对即插即用AI系统的需求日益增长。其中,提示工程作为一种重要的AI技术,备受关注。然而,用户在编写提示时往往面临学习曲线陡峭和时间投入巨大的挑战,而现有的自动提示工程(APE)模型使用起来也存在困难。为了解决这些问题,北京大学和百川智能的研究人员提出了一种基于LLM的即插即用APE系统——PAS。

PAS的提出旨在利用经过高质量、自动生成的提示补充数据集训练的LLM,实现出色的性能。在全面的基准测试中,PAS与之前的APE模型相比取得了最先进的(SoTA)结果,平均提高了6.09个百分点。此外,PAS还具有很高的效率,仅使用9000个数据点就实现了SoTA性能。

PAS的一个显著特点是能够自主生成提示增强数据,而无需额外的人力劳动。这使得PAS具有很高的灵活性,可以与所有现有的LLM兼容,并适用于各种任务。在人类评估中,PAS也表现出色,突显了其作为用户插件的适用性。

然而,尽管PAS在性能、效率和灵活性方面具有优势,但也有一些潜在的局限性。首先,PAS的性能可能受到训练数据质量的影响。如果训练数据存在偏差或不完整,可能会影响PAS在实际应用中的效果。其次,PAS的自主生成能力虽然提高了效率,但也可能导致生成的提示缺乏多样性或创新性。

尽管如此,PAS的提出为解决提示工程中的挑战提供了一种有前途的方法。通过利用高质量的训练数据和自主生成能力,PAS有望提高LLM的可用性和有效性,为用户提供更好的体验。随着进一步的研究和优化,PAS有望在未来的AI应用中发挥重要作用。

在技术发展日新月异的今天,我们见证了人工智能领域的许多突破。其中,大型语言模型(LLMs)的崛起为我们带来了前所未有的机遇和挑战。为了更好地利用这些模型的能力,研究人员和工程师们不断探索新的技术和方法。

提示工程就是其中之一。通过精心设计的提示,我们可以引导模型生成符合我们需求的输出。然而,编写有效的提示并不容易,需要深厚的专业知识和丰富的经验。为了解决这个问题,研究人员提出了自动提示工程(APE)的概念,旨在通过自动化的方式生成高质量的提示。

在这方面,北京大学和百川智能的研究人员取得了重要的进展。他们提出了一种名为PAS的即插即用APE系统,利用经过高质量数据集训练的LLM来实现出色的性能。PAS在基准测试中取得了令人瞩目的结果,与之前的APE模型相比,平均提高了6.09个百分点。

PAS的另一个重要特点是其效率。与之前的方法相比,PAS仅使用9000个数据点就实现了SoTA性能,这对于资源有限的应用场景尤为重要。此外,PAS还具有自主生成提示增强数据的能力,进一步提高了其灵活性和适用性。

然而,我们也应该看到PAS的一些潜在局限性。首先,PAS的性能可能受到训练数据质量的影响。如果训练数据存在偏差或不完整,可能会影响PAS在实际应用中的效果。其次,PAS的自主生成能力虽然提高了效率,但也可能导致生成的提示缺乏多样性或创新性。

论文地址:https://arxiv.org/abs/2407.06027

目录
相关文章
AI竟能独立完成顶会论文!The AI Scientist-v2:开源端到端AI自主科研系统,自动探索科学假设生成论文
The AI Scientist-v2 是由 Sakana AI 等机构开发的端到端自主科研系统,通过树搜索算法与视觉语言模型反馈实现科学假设生成、实验执行及论文撰写全流程自动化,其生成论文已通过国际顶会同行评审。
210 34
AI竟能独立完成顶会论文!The AI Scientist-v2:开源端到端AI自主科研系统,自动探索科学假设生成论文
船厂复杂环境下的多模态AI安防系统技术实践
本方案针对船厂复杂工业场景,设计了五层分布式AI安防系统架构:数据采集层(海康摄像头+气体传感器)、预处理层(动态光照补偿)、特征引擎层(YOLOv8s检测+ESRGAN增强+ByteTrack跟踪)和规则决策层。同时,实现交通违规检测、龙门吊防撞及人员滞留监测等关键模块,并通过两阶段小目标检测、工业干扰优化与边缘计算加速解决工程挑战。系统采用边缘-中心协同架构,支持REST API与MQTT/ZMQ通信,技术验证数据显示其准确率高达92.4%,障碍物识别延迟平均仅850ms。
48 1
船厂复杂环境下的多模态AI安防系统技术实践
tauri2.0+vite6接入deepseek-v3电脑端ai流式多轮聊天对话系统
原创重磅新作tauri2.0+vite6+deepseek-v3+arco-design实战客户端AI流式聊天对话系统。整合 Tauri2.x 接入 DeepSeek-V3 大模型。支持多窗口浅色+暗黑主题、代码高亮、本地会话缓存。
75 5
探讨AI数字人软件系统的开发与部署策略
随着科技发展,人工智能成为经济转型的关键驱动力,AI数字人软件系统在各行业广泛应用。本文探讨其开发与部署策略,助力企业和开发者参考。开发策略包括需求分析、技术选型、模块化设计、数据驱动及安全性保障;部署策略涵盖硬件环境、软件配置、分布式与云端部署以及运维保障,推动系统智能化与稳定性提升。
构建智能AI记忆系统:多智能体系统记忆机制的设计与技术实现
本文探讨了多智能体系统中记忆机制的设计与实现,提出构建精细化记忆体系以模拟人类认知过程。文章分析了上下文窗口限制的技术挑战,并介绍了四种记忆类型:即时工作记忆、情节记忆、程序性记忆和语义知识系统。通过基于文件的工作上下文记忆、模型上下文协议的数据库集成以及RAG系统等技术方案,满足不同记忆需求。此外,高级技术如动态示例选择、记忆蒸馏和冲突解决机制进一步提升系统智能化水平。总结指出,这些技术推动智能体向更接近人类认知的复杂记忆处理机制发展,为人工智能开辟新路径。
173 5
构建智能AI记忆系统:多智能体系统记忆机制的设计与技术实现
“服务器罢工前的预言术”:用AI预测系统状态真香指南
“服务器罢工前的预言术”:用AI预测系统状态真香指南
37 4
开源AI驱动的商业综合体保洁管理——智能视频分析系统的技术解析
智能保洁管理系统通过计算机视觉与深度学习技术,解决传统保洁模式中监管难、效率低的问题。系统涵盖垃圾滞留监测、地面清洁度评估、设施表面检测等功能,实现高精度(96%以上)、实时响应(<200毫秒)。基于开源TensorFlow与Kubernetes架构,支持灵活部署与定制开发,适用于商场、机场等场景,提升管理效率40%以上。未来可扩展至气味监测等领域,推动保洁管理智能化升级。
131 26
LangGraph实战教程:构建会思考、能记忆、可人工干预的多智能体AI系统
本文介绍了使用LangGraph和LangSmith构建企业级多智能体AI系统的完整流程。从简单的ReAct智能体开始,逐步扩展至包含身份验证、人工干预、长期内存管理和性能评估的复杂架构。文章详细讲解了状态管理、工具集成、条件流程控制等关键技术,并对比了监督者架构与群体架构的优劣。通过系统化的方法,展示了如何构建可靠、可扩展的AI系统,为现代AI应用开发提供了坚实基础。*作者:Fareed Khan*
94 0
LangGraph实战教程:构建会思考、能记忆、可人工干预的多智能体AI系统
AI加持的系统性能优化:别让你的服务器“累趴下”
AI加持的系统性能优化:别让你的服务器“累趴下”
124 12

热门文章

最新文章