AI Agent 金融助理0-1 Tutorial 利用Python实时查询股票API的FinanceAgent框架构建股票(美股/A股/港股) AI Finance Agent

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 金融领域Finance AI Agents方面的工作,发现很多行业需求和用户输入的 query都是和查询股价/行情/指数/财报汇总/金融理财建议相关。如果需要准确的 金融实时数据就不能只依赖LLM 来生成了。常规的方案包括 RAG (包括调用API )再把对应数据和prompt 一起拼接送给大模型来做文本生成。稳定的一些商业机构的金融数据API基本都是收费的,如果是以科研和demo性质有一些开放爬虫API可以使用。这里主要介绍一下 FinanceAgent,github地址 https://github.com/AI-Hub-Admin/FinanceAgent

      最近在总结金融领域Finance AI Agents方面的工作,发现很多行业需求和用户输入的 query都是和查询股价/行情/指数/财报汇总/金融理财建议相关。其中LLM大语言模型擅长于总结文本,但是数据都是训练样本中的,不会实时更新,如果需要准确的 金融实时数据就不能只依赖LLM 来生成了。常规的方案包括 RAG (包括调用API )再把对应数据和prompt 一起拼接送给大模型来做文本生成。稳定的一些商业机构的金融数据API基本都是收费的,如果是以科研和demo性质有一些开放爬虫API可以使用,另外之前 yFinance的python包因为yahoo财经 yahoo finance 不再提供免费服务也不能继续使用了。

      这里主要介绍一下 FinanceAgent 这个 python库 (github地址 https://github.com/AI-Hub-Admin/FinanceAgent,pypi地址:https://pypi.org/project/FinanceAgent/),里面封装了基于公开网站和网页抓取来获得最新股票/指数行情数据。提供了比如 A股 (雪球 xueqiu.com),美股 (morningstar.com),港股 (hkex.com) 等全球股票市场访问的 Open API,抓取页面,解析结果统一接口的工作。


1. 调用雪球API获取A股实时股价


以A股为例,用户query 解析后的需求是,查询雪球数据来源的 贵州茅台(SH600519)和 招商银行 (SH600036) 两个股票代码的实时股价。

import FinanceAgent as fa
cn_stock_info_json = fa.api(symbol_list=['SH600519', 'SH600036'], market="CN_MAINLAND")


keys = ["symbol", "avg_price", "high", "low", "previous_close", "update_time", "market_capitalization", "pe_ratio", "source_url", "data_source"]    
print ("#### CN Shanghai and Shenzhen Stock Exchange LSE")
for stock_info in cn_stock_info_json:
    print ("-----------------------------------")
    for key in keys:
        value = stock_info[key] if key in stock_info else ""
        print (key + "|" + value)


得到的输出是


#### CN MAINLAND Stock Info
-----------------------------------
symbol|SH600036
avg_price|39.265919080336076 CNY
high|39.8 CNY
low|38.69 CNY
previous_close|38.43 CNY
update_time|2024-10-14 15:00:00
market_capitalization|9918.97 亿 CNY
pe_ratio|
source|XUEQIU.COM, https://xueqiu.com/S/SH600036
data_source|xueqiu.com
-----------------------------------
symbol|SH600519
avg_price|1602.5501242724608 CNY
high|1620.63 CNY
low|1581.17 CNY
previous_close|1604.99 CNY
update_time|2024-10-14 15:00:00
market_capitalization|20124.16 亿 CNY
pe_ratio|
source|XUEQIU.COM, https://xueqiu.com/S/SH600519
data_source|xueqiu.com


从开源代码中发现,代码库提供的数据来源是 雪球提供的API,包括页面 茅台(https://xueqiu.com/S/SH600036) 和 招商银行 (https://xueqiu.com/S/SH600519),具体的抓取和API解析都可以从这个文件里看到。接口返回的数据标准化后得到一个json,可以根据字段来获取数据,包括 https://github.com/AI-Hub-Admin/FinanceAgent/blob/main/src/FinanceAgent/stock/request_stock_price_cn.py



2. 调用港交所(HKEX)的网页API获取港股实时股价


假设用户的需求输入的问题是 "帮我查一下腾讯的股价和市值"。我们在准备给LLM大模型数据前,需要把 腾讯最新的 股价 (price) 市值 (market_cap)的信息查询到,再和prompt合并喂给大模型产出回答。


腾讯股票代码(700),快手的股票代码是(1024),港交所官网的地址在这里(https://www.hkex.com.hk/Market-Data/Securities-Prices/Equities/Equities-Quote?sym=700&sc_lang=en),港交所没有提供官方查询的API,因此代码库基于爬虫来实时更新 Token,模拟请求来抓取数据。


FinanceAgent库封装和调用API,获取Token等方法 fetch_clean_token_by_force() ,以及解析的过程。地址:https://github.com/AI-Hub-Admin/FinanceAgent/blob/main/src/FinanceAgent/stock/request_hk_stock_price_py3.py



import FinanceAgent as fa
hk_stock_info_json = fa.api(symbol_list=['700', '1024'], market="HK")

keys = ["symbol", "avg_price", "high", "low", "previous_close", "update_time", "market_capitalization", "pe_ratio", "source_url", "data_source"]       
print ("#### HongKong Stock Exchange LSE")
for stock_info in hk_stock_info_json:
    print ("-----------------------------------")
    for key in keys:
        value = stock_info[key] if key in stock_info else ""
        print (key + "|" + value)


返回结果包括

-----------------------------------
symbol|700
avg_price|436.000 HKD
high|440.800 HKD
low|424.000 HKD
previous_close|438.800 HKD
update_time|14 Oct 2024 18:33
market_capitalization|4,045.91 B HKD
pe_ratio|33.32
source|HKEX, https://www.hkex.com.hk/Market-Data/Securities-Prices/Equities/Equities-Quote?sym=700&sc_lang=en
data_source|hkex.com
-----------------------------------
symbol|1024
avg_price|49.650 HKD
high|50.950 HKD
low|47.600 HKD
previous_close|50.850 HKD
update_time|14 Oct 2024 18:33
market_capitalization|214.06 B HKD
pe_ratio|31.15
source|HKEX, https://www.hkex.com.hk/Market-Data/Securities-Prices/Equities/Equities-Quote?sym=1024&sc_lang=en
data_source|hkex.com


FinanceAgent 代码库和地址

https://github.com/AI-Hub-Admin/FinanceAgent

http://www.deepnlp.org/blog/chatgpt-stock-global-market

http://www.deepnlp.org/blog/fin-chatbot-first-spider-hkex

http://www.deepnlp.org/blog/financial-chatbot-chatgpt-1

http://www.deepnlp.org/blog/generative-ai-search-engine-optimization-how-to-improve-your-content

http://www.deepnlp.org/workspace/dialogue_visualization

http://www.deepnlp.org/workspace/agent_visualization

http://www.deepnlp.org/store/pub/pub-openai-o1

http://www.deepnlp.org/store/pub/pub-chatgpt-openai

http://www.deepnlp.org/blog/introduction-to-multimodal-generative-models

https://pypi.org/project/FinanceAgent/


相关文章
|
17天前
|
人工智能 Java API
教你自创工作流,赋予AI助理个性化推荐超能力
本文详细介绍了使用Spring AI Alibaba构建AI助理的全过程,涵盖从基本流程设计到实际操作实现的各个方面。文章首先回顾了前期工作,包括旅游攻略、天气查询和个人待办事项等功能模块的设计与实现。接着,深入探讨了工作流的实现细节,如事件封装优化、工作流节点创建及复杂工作流的高效管理。最后,通过实际项目启动与运行测试,展示了AI助理的实际效果,验证了系统的稳定性和可扩展性。本文不仅适合Java开发者学习AI技术,也为后续的优化和功能拓展提供了宝贵的经验。
362 7
教你自创工作流,赋予AI助理个性化推荐超能力
|
6天前
|
人工智能 数据库 自然语言处理
拥抱Data+AI|DMS+AnalyticDB助力钉钉AI助理,轻松玩转智能问数
「拥抱Data+AI」系列文章由阿里云瑶池数据库推出,基于真实客户案例,展示Data+AI行业解决方案。本文通过钉钉AI助理的实际应用,探讨如何利用阿里云Data+AI解决方案实现智能问数服务,使每个人都能拥有专属数据分析师,显著提升数据查询和分析效率。点击阅读详情。
拥抱Data+AI|DMS+AnalyticDB助力钉钉AI助理,轻松玩转智能问数
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
智谱AI推出的GLM-4V-Flash是一款专注于图像理解的免费开放大模型,提供API接口支持用户上传图片URL或Base64编码图片获取详细的图像描述。该模型通过深度学习和卷积神经网络技术,简化了图像分析流程,提高了开发效率,适用于内容审核、辅助视障人士、社交媒体、教育和电子商务等多个应用场景。
86 14
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
|
11天前
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
74 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
|
5天前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
19天前
|
人工智能 自然语言处理 JavaScript
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统
Agent-E 是一个基于 AutoGen 代理框架构建的智能自动化系统,专注于浏览器内的自动化操作。它能够执行多种复杂任务,如填写表单、搜索和排序电商产品、定位网页内容等,从而提高在线效率,减少重复劳动。本文将详细介绍 Agent-E 的功能、技术原理以及如何运行该系统。
66 5
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统
|
13天前
|
自然语言处理 搜索推荐 API
如何构建一套qwen-max智能体拥有媲美通义千问在线接口的能力
基于Qwen-Max构建的智能系统,融合了自然语言处理、决策引擎、任务识别与工具选择等技术,具备强大的多模态理解和生成能力。该系统能自动分析用户输入,识别任务类型,选择最优工具执行任务,并整合结果反馈给用户,广泛应用于查询、生成、翻译和图像处理等多个领域,显著提升了任务处理效率和智能化水平。
93 9
|
11天前
|
人工智能 自然语言处理 搜索推荐
如何构建媲美通义千问在线接口的qwen-max智能体
qwen-max智能体是一个高效、多功能的系统,擅长处理查询、文本生成、翻译、图像处理等任务。通过自然语言理解、任务识别、决策引擎和工具选择,它能自动选择最佳方案,满足用户多样化需求,提供智能化服务。系统旨在快速响应、精准执行,并持续优化,支持多任务类型,适应不断变化的需求。
|
13天前
|
存储 API 数据库
使用Python开发获取商品销量详情API接口
本文介绍了使用Python开发获取商品销量详情的API接口方法,涵盖API接口概述、技术选型(Flask与FastAPI)、环境准备、API接口创建及调用淘宝开放平台API等内容。通过示例代码,详细说明了如何构建和调用API,以及开发过程中需要注意的事项,如数据库连接、API权限、错误处理、安全性和性能优化等。
58 5
|
19天前
|
API Python
【Azure Developer】分享一段Python代码调用Graph API创建用户的示例
分享一段Python代码调用Graph API创建用户的示例
41 11

热门文章

最新文章

下一篇
DataWorks