大数据-154 Apache Druid 架构与原理详解 基础架构、架构演进

简介: 大数据-154 Apache Druid 架构与原理详解 基础架构、架构演进

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(已更完)

Flink(已更完)

ClickHouse(已更完)

Kudu(已更完)

Druid(正在更新…)

章节内容

上节我们完成了如下的内容:


Apache Druid 从 Kafka 中加载数据

实际测试 可视化操作

基础架构

Coordinator Node

主要负责历史节点的数据负载均衡,以及通过规则管理数据的生命周期,协调节点告诉历史节点加载新数据、卸载过期数据、复制数据、负责均衡移动数据

Coordinator是周期运行的(由 druid.coordinator.period 配置指定,默认间隔60秒),Coordinator需要维护和ZooKeeper的连接,以获取集群的信息。Segment和Rule的信息保存在元数据中,所以也需要维护与元数据库的连接。


Overlord Node

进程监视MiddleManager进程,并且是Druid数据摄入的主节点,负责将提取任务分配给MiddleManagers并协调Segment发布,包括接受、拆解、分配Task,以及创建Task相关的锁,并返回Task的状态。


Historical Node

加载生成好的数据文件,以供数据查询。Historical Node是整个集群查询性能的核心所在,Historical会承担绝大部分的Segment查询。


Historical 进程从 Deep Storage 中下载 Segment,并响应有关这些Segment的查询请求(这些请求来自Broker进程)

Historical 进程不处理写入请求

Historical 进程采用了无共享架构设计,它知道如何去加载和删除 Segment,以及如何基于 Segment 来响应查询。即便底层的深度存储无法正常工作,Historical 进程还是能针对其已同步的 Segments,正常提供查询服务。

底层的深度存储无法正常工作,Historical进程还是能针对其已同步的 Segments,正常提供查询服务。

MiddleManager Node

及时摄入实时数据,生成Segment数据文件


MiddleManager 进程是执行提交任务的工作节点,MiddleManagers将任务转发给在不同JVM中运行的Peon进程

MiddleManager、Peon、Task的对应关系是:每个Peon进程一次只能运行一个Task任务,但一个MiddleManager却可以管理多个Peon进程

Broker Node

接收客户端查询请求,并将这些查询转发给 Histo 和 MiddleManagers。当Brokers从这些子查询中收到结果时,它们会合并这些结果并将它们返回给调用者。


Broker 节点负责转发Client查询请求的

Broker 通过 ZooKeeper 能够知道哪个 Segment 在哪些节点上,将查询转发给相应节点

所有节点返回数据后,Broker会所有节点的数据进行合并,然后返回给Client

Router Node

(可选)

负责将路由转发到Broker、Coordinator、Overlords


Router进程可以在 Broker、Overlords、Coordinator进程之上,提供一层统一的API网关

Router进程是可选的,如果集群数据规模已经到达了TB级别,需要考虑启动(druid.router.managerProxy.enable=true)

一旦集群规模达到一定数量级,那么发生故障的概率就会变得不容忽视,而Router支持将请求只发送给健康的节点,避免请求失败。

同时,查询的响应时间和资源消耗,也会随着数据量的增长而变高,而Router支持设置查询的优先级和负载均衡策略,避免了大查询造成的队列堆积或查询热点等问题

如何分类

Druid的进程可以被任意部署,为了理解与部署组织方便,这些进程分为了三类:


Master:Coordinator、Overlord 负责数据可用性和摄取

Query:Broker、Router 负责处理外部请求

Data:Historical、MiddleManager,负责实际的Ingestion负载和数据存储

其他依赖

Deep Storage

存放生成的 Segment 数据文件,并供历史服务器下载,对于单节点集群可以是本地磁盘,而对于分布式集群一般是HDFS。


Druid使用 Deep Storage来做数据的备份,也作为Druid进程之间在后台传输数据的一种方式

当相应查询时,Historical首先从本地磁盘读取预取的段,这也意味着需要在Deep Storage和加载的数据Historical中拥有足够的磁盘空间。

Metadata Storage

存储Durid集群的元数据信息,如Segment的相关信息,一般使用MySQL。

ZooKeeper

为Durid集群提供以执行协调任务,如内部服务的监控,协调和领导者选举


Coordinator 节点的 Leader 选举

Historical 节点发布 Segment 的协议

Coordinator 和 Historical 之间 load、drop Segment的协议

Orverlord节点的Leader选举

Overlord和MiddleManger之间Task管理

架构演进

初始版本~0.6.0

2012-2013年

0.7.0~0.12.0

2013年-2018年

集群管理

0.13.0~当前版本

Lambda架构

从大的架构上看,Druid是一个Lambda架构。

Lambda架构是由Storm坐着Nathan Marz提出的一个实时大数据处理框架,Lambda架构设计是为了处理大规模数据时,同时发挥流处理和批处理的优势:


通过批处理提供全面、准确的数据

通过流处理提供低延迟的数据

从而达到平衡延迟、吞吐量和容错性的目的,为了满足下游的及时查询,批处理和流处理的结果会合并。

Lambda架构包含三层:BatchLayer、SpeedLayer、Serving Layer


BatchLayer:批处理层,对离线的历史数据进行预计算,为了下游能够快速查询想要的结果,由于批处理基于完成的历史数据集,准确性可以得到保证,批处理层可以用Hadoop、Spark、Flink等框架计算。

SpeedLayer:加速处理层,处理实时的增量数据,这一层重点在于低延迟,加速层的数据不如批处理层那样完整和准确,但是可以填补批处理高延迟导致的数据空白。加速层可以使用Storm、Spark Streaming和Flink等框架计算。

ServingLayer:合并层,将历史数据、实时数据合并在一起,输出到数据库或者其他介质,供下游分析

流式数据链路

Raw Data - Kafka - Streaming Processor(Optional 实时ETL)- Kafka(Optional)- Druid - Application/User


批处理数据链路

Raw data - Kafka(Optional) - HDFS - ETL Process(Optional)- Druid - Application/User


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
5月前
|
存储 SQL 监控
数据中台架构解析:湖仓一体的实战设计
在数据量激增的数字化时代,企业面临数据分散、使用效率低等问题。数据中台作为统一管理与应用数据的核心平台,结合湖仓一体架构,打通数据壁垒,实现高效流转与分析。本文详解湖仓一体的设计与落地实践,助力企业构建统一、灵活的数据底座,驱动业务决策与创新。
|
4月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
1122 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
2月前
|
机器学习/深度学习 自然语言处理 监控
23_Transformer架构详解:从原理到PyTorch实现
Transformer架构自2017年Google发表的论文《Attention Is All You Need》中提出以来,彻底改变了深度学习特别是自然语言处理领域的格局。在短短几年内,Transformer已成为几乎所有现代大型语言模型(LLM)的基础架构,包括BERT、GPT系列、T5等革命性模型。与传统的RNN和LSTM相比,Transformer通过自注意力机制实现了并行化训练,极大提高了模型的训练效率和性能。
|
3月前
|
存储 分布式计算 资源调度
【赵渝强老师】阿里云大数据MaxCompute的体系架构
阿里云MaxCompute是快速、全托管的EB级数据仓库解决方案,适用于离线计算场景。它由计算与存储层、逻辑层、接入层和客户端四部分组成,支持多种计算任务的统一调度与管理。
345 1
|
5月前
|
存储 监控 算法
园区导航系统技术架构实现与原理解构
本文聚焦园区导航场景中室内外定位精度不足、车辆调度路径规划低效、数据孤岛难以支撑决策等技术痛点,从架构设计到技术原理,对该系统从定位到数据中台进行技术拆解。
246 0
园区导航系统技术架构实现与原理解构
|
4月前
|
SQL 存储 监控
流处理 or 批处理?大数据架构还需要流批一体吗?
简介:流处理与批处理曾是实时监控与深度分析的两大支柱,但二者在数据、代码与资源上的割裂,导致维护成本高、效率低。随着业务对数据实时性与深度分析的双重需求提升,传统架构难以为继,流批一体应运而生。它旨在通过逻辑、存储与资源的统一,实现一套系统、一套代码同时支持实时与离线处理,提升效率与一致性,成为未来大数据架构的发展方向。
|
5月前
|
消息中间件 分布式计算 大数据
“一上来就搞大数据架构?等等,你真想清楚了吗?”
“一上来就搞大数据架构?等等,你真想清楚了吗?”
113 1
|
2月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
453 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
355 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式

推荐镜像

更多