大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)

接上篇:https://developer.aliyun.com/article/1623066?spm=a2c6h.13148508.setting.17.49764f0enfw0YQ

数据虽然加载了,但是格式不对,我们在右侧选择:JSON:

点击之后,可以看到,(如果你解析不顺利,可以用这个尝试)点击 Add column flattening

如果正常解析,数据应该是这个样子:

ParserTime

继续点击 Next Parse Time:

Transform

继续点击 Next Transform:

  • 不建议在Druid中进行复杂的数据变化操作,可考虑将这些操作放在数据预处理的过程中处理
  • 这里没有定义数据转换

Filter

继续点击 Next Filter:

  • 不建议在Druid中进行复杂的数据过滤操作,可以考虑将这些操作放在数据预处理中
  • 这里没有定义数据过滤

Configuration Schema

点击 Next Configuration Schema:

  • 定义指标列、维度列
  • 定义如何在维度列上进行计算
  • 定义是否在摄取数据时进行数据的合并(即RollUp),以及RollUp的粒度

此时点击右侧的:RollUp,会看到数据被聚合成了两条:

聚合结果:

Tune

点击 Next Tune:

  • 定义任务执行和优化相关的参数

Publish

点击 Next Publish:

  • 定义Datasource的名称
  • 定义数据解析失败后采取的动作

Edit Special

点击 Next Edit spec:

  • JSON串为数据摄取规范,可返回之前的步骤中进行修改,也可以直接编辑规范内容,并在之前的步骤可以看到修改的结果
  • 摄取规范定义完成后,点击Submit会创建一个数据摄取的任务

Submit

点击 Submit 按钮:

数据查询

  • 数据摄取规范发布后生成Supervisor
  • Supervisor会启动一个Task,从kafka中摄取数据
    需要等待一段时间,Datasource才会创建完毕,选择 【Datasources】板块:
    点击末尾的三个小圆点,选择 Query With SQL:

会出现如下的界面,我们写入SQL,并运行:

SELECT 
  *
FROM 
  "druid1"

执行结果如下图:

数据摄取规范

{
  "type":"kafka",
  "spec":{
    "ioConfig":Object{...},
    "tuningConfig":Object{...},
    "dataSchema":Object{...}
  }
}
  • dataSchema:指定传入数据的Schema
  • ioConfig:指定数据的来源和去向
  • tuningConfig:指定各种摄取参数
目录
相关文章
|
6天前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
31 2
|
19天前
|
消息中间件 安全 Kafka
Apache Kafka安全加固指南:保护你的消息传递系统
【10月更文挑战第24天】在现代企业环境中,数据的安全性和隐私保护至关重要。Apache Kafka作为一款广泛使用的分布式流处理平台,其安全性直接影响着业务的稳定性和用户数据的安全。作为一名资深的Kafka使用者,我深知加强Kafka安全性的重要性。本文将从个人角度出发,分享我在实践中积累的经验,帮助读者了解如何有效地保护Kafka消息传递系统的安全性。
46 7
|
19天前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
64 5
|
19天前
|
消息中间件 存储 监控
构建高可用性Apache Kafka集群:从理论到实践
【10月更文挑战第24天】随着大数据时代的到来,数据传输与处理的需求日益增长。Apache Kafka作为一个高性能的消息队列服务,因其出色的吞吐量、可扩展性和容错能力而受到广泛欢迎。然而,在构建大规模生产环境下的Kafka集群时,保证其高可用性是至关重要的。本文将从个人实践经验出发,详细介绍如何构建一个高可用性的Kafka集群,包括集群规划、节点配置以及故障恢复机制等方面。
53 4
|
9天前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
49 14
|
15天前
|
监控 Cloud Native BI
8+ 典型分析场景,25+ 标杆案例,Apache Doris 和 SelectDB 精选案例集(2024版)电子版上线
飞轮科技正式推出 Apache Doris 和 SelectDB 精选案例集 ——《走向现代化的数据仓库(2024 版)》,汇聚了来自各行各业的成功案例与实践经验。该书以行业为划分标准,辅以使用场景标签,旨在为读者提供一个高度整合、全面涵盖、分类清晰且易于查阅的学习资源库。
|
14天前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
47 2
|
15天前
|
数据采集 机器学习/深度学习 搜索推荐
大数据与社交媒体:用户行为分析
【10月更文挑战第31天】在数字化时代,社交媒体成为人们生活的重要部分,大数据技术的发展使其用户行为分析成为企业理解用户需求、优化产品设计和提升用户体验的关键手段。本文探讨了大数据在社交媒体用户行为分析中的应用,包括用户画像构建、情感分析、行为路径分析和社交网络分析,以及面临的挑战与机遇。
|
15天前
|
机器学习/深度学习 搜索推荐 大数据
大数据与教育:学生表现分析的工具
【10月更文挑战第31天】在数字化时代,大数据成为改善教育质量的重要工具。本文探讨了大数据在学生表现分析中的应用,介绍学习管理系统、智能评估系统、情感分析技术和学习路径优化等工具,帮助教育者更好地理解学生需求,制定个性化教学策略,提升教学效果。尽管面临数据隐私等挑战,大数据仍为教育创新带来巨大机遇。
|
18天前
|
人工智能 供应链 搜索推荐
大数据分析:解锁商业智能的秘密武器
【10月更文挑战第31天】在信息爆炸时代,大数据分析成为企业解锁商业智能的关键工具。本文探讨了大数据分析在客户洞察、风险管理、供应链优化、产品开发和决策支持等方面的应用,强调了明确分析目标、选择合适工具、培养专业人才和持续优化的重要性,并展望了未来的发展趋势。

推荐镜像

更多