点一下关注吧!!!非常感谢!!持续更新!!!
目前已经更新到了:
Hadoop(已更完)
HDFS(已更完)
MapReduce(已更完)
Hive(已更完)
Flume(已更完)
Sqoop(已更完)
Zookeeper(已更完)
HBase(已更完)
Redis (已更完)
Kafka(已更完)
Spark(已更完)
Flink(已更完)
ClickHouse(已更完)
Kudu(正在更新…)
章节内容
上节我们完成了如下的内容:
Kudu Java API
增删改查 编写案例测试
实现思路
将数据从 Flink 下沉到 Kudu 的基本思路如下:
环境准备:确保 Flink 和 Kudu 环境正常运行,并配置好相关依赖。
创建 Kudu 表:在 Kudu 中定义要存储的数据表,包括主键和列类型。
数据流设计:使用 Flink 的 DataStream API 读取输入数据流,进行必要的数据处理和转换。
写入 Kudu:通过 Kudu 的连接器将处理后的数据写入 Kudu 表。需要配置 Kudu 客户端和表的相关信息。
执行作业:启动 Flink 作业,实时将数据流中的数据写入 Kudu,便于后续查询和分析。
添加依赖
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>org.example</groupId> <artifactId>flink-test</artifactId> <version>1.0-SNAPSHOT</version> <properties> <maven.compiler.source>11</maven.compiler.source> <maven.compiler.target>11</maven.compiler.target> <flink.version>1.11.1</flink.version> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> </properties> <dependencies> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-java</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-streaming-java_2.12</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.flink</groupId> <artifactId>flink-clients_2.12</artifactId> <version>${flink.version}</version> </dependency> <dependency> <groupId>org.apache.kudu</groupId> <artifactId>kudu-client</artifactId> <version>1.17.0</version> </dependency> </dependencies> </project>
数据源
new UserInfo("001", "Jack", 18), new UserInfo("002", "Rose", 20), new UserInfo("003", "Cris", 22), new UserInfo("004", "Lily", 19), new UserInfo("005", "Lucy", 21), new UserInfo("006", "Json", 24),
自定义下沉器
package icu.wzk.kudu; import org.apache.flink.configuration.Configuration; import org.apache.flink.streaming.api.functions.sink.RichSinkFunction; import org.apache.kudu.Schema; import org.apache.kudu.Type; import org.apache.kudu.client.*; import org.apache.log4j.Logger; import java.io.ByteArrayOutputStream; import java.io.ObjectOutputStream; import java.util.Map; public class MyFlinkSinkToKudu extends RichSinkFunction<Map<String, Object>> { private final static Logger logger = Logger.getLogger("MyFlinkSinkToKudu"); private KuduClient kuduClient; private KuduTable kuduTable; private String kuduMasterAddr; private String tableName; private Schema schema; private KuduSession kuduSession; private ByteArrayOutputStream out; private ObjectOutputStream os; public MyFlinkSinkToKudu(String kuduMasterAddr, String tableName) { this.kuduMasterAddr = kuduMasterAddr; this.tableName = tableName; } @Override public void open(Configuration parameters) throws Exception { out = new ByteArrayOutputStream(); os = new ObjectOutputStream(out); kuduClient = new KuduClient.KuduClientBuilder(kuduMasterAddr).build(); kuduTable = kuduClient.openTable(tableName); schema = kuduTable.getSchema(); kuduSession = kuduClient.newSession(); kuduSession.setFlushMode(KuduSession.FlushMode.AUTO_FLUSH_BACKGROUND); } @Override public void invoke(Map<String, Object> map, Context context) throws Exception { if (null == map) { return; } try { int columnCount = schema.getColumnCount(); Insert insert = kuduTable.newInsert(); PartialRow row = insert.getRow(); for (int i = 0; i < columnCount; i ++) { Object value = map.get(schema.getColumnByIndex(i).getName()); insertData(row, schema.getColumnByIndex(i).getType(), schema.getColumnByIndex(i).getName(), value); OperationResponse response = kuduSession.apply(insert); if (null != response) { logger.error(response.getRowError().toString()); } } } catch (Exception e) { logger.error(e); } } @Override public void close() throws Exception { try { kuduSession.close(); kuduClient.close(); os.close(); out.close(); } catch (Exception e) { logger.error(e); } } private void insertData(PartialRow row, Type type, String columnName, Object value) { try { switch (type) { case STRING: row.addString(columnName, value.toString()); return; case INT32: row.addInt(columnName, Integer.valueOf(value.toString())); return; case INT64: row.addLong(columnName, Long.valueOf(value.toString())); return; case DOUBLE: row.addDouble(columnName, Double.valueOf(value.toString())); return; case BOOL: row.addBoolean(columnName, Boolean.valueOf(value.toString())); return; case BINARY: os.writeObject(value); row.addBinary(columnName, out.toByteArray()); return; case FLOAT: row.addFloat(columnName, Float.valueOf(value.toString())); default: throw new UnsupportedOperationException("Unknown Type: " + type); } } catch (Exception e) { logger.error("插入数据异常: " + e); } } }
编写实体
package icu.wzk.kudu; public class UserInfo { private String id; private String name; private Integer age; public UserInfo(String id, String name, Integer age) { this.id = id; this.name = name; this.age = age; } public String getId() { return id; } public void setId(String id) { this.id = id; } public String getName() { return name; } public void setName(String name) { this.name = name; } public Integer getAge() { return age; } public void setAge(Integer age) { this.age = age; } }
执行建表
package icu.wzk.kudu; import org.apache.kudu.ColumnSchema; import org.apache.kudu.Schema; import org.apache.kudu.Type; import org.apache.kudu.client.CreateTableOptions; import org.apache.kudu.client.KuduClient; import org.apache.kudu.client.KuduException; import java.util.ArrayList; import java.util.List; public class KuduCreateTable { public static void main(String[] args) throws KuduException { String masterAddress = "localhost:7051,localhost:7151,localhost:7251"; KuduClient.KuduClientBuilder kuduClientBuilder = new KuduClient.KuduClientBuilder(masterAddress); KuduClient kuduClient = kuduClientBuilder.build(); String tableName = "user"; List<ColumnSchema> columnSchemas = new ArrayList<>(); ColumnSchema id = new ColumnSchema .ColumnSchemaBuilder("id", Type.INT32) .key(true) .build(); columnSchemas.add(id); ColumnSchema name = new ColumnSchema .ColumnSchemaBuilder("name", Type.STRING) .key(false) .build(); columnSchemas.add(name); ColumnSchema age = new ColumnSchema .ColumnSchemaBuilder("age", Type.INT32) .key(false) .build(); columnSchemas.add(age); Schema schema = new Schema(columnSchemas); CreateTableOptions options = new CreateTableOptions(); // 副本数量为1 options.setNumReplicas(1); List<String> colrule = new ArrayList<>(); colrule.add("id"); options.addHashPartitions(colrule, 3); kuduClient.createTable(tableName, schema, options); kuduClient.close(); } }
主逻辑代码
package icu.wzk.kudu; import org.apache.flink.api.common.functions.MapFunction; import org.apache.flink.streaming.api.datastream.DataStreamSource; import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import java.util.HashMap; import java.util.Map; import java.util.stream.Stream; public class SinkToKuduTest { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); DataStreamSource<UserInfo> dataSource = env.fromElements( new UserInfo("001", "Jack", 18), new UserInfo("002", "Rose", 20), new UserInfo("003", "Cris", 22), new UserInfo("004", "Lily", 19), new UserInfo("005", "Lucy", 21), new UserInfo("006", "Json", 24) ); SingleOutputStreamOperator<Map<String, Object>> mapSource = dataSource .map(new MapFunction<UserInfo, Map<String, Object>>() { @Override public Map<String, Object> map(UserInfo value) throws Exception { Map<String, Object> map = new HashMap<>(); map.put("id", value.getId()); map.put("name", value.getName()); map.put("age", value.getAge()); return map; } }); String kuduMasterAddr = "localhost:7051,localhost:7151,localhost:7251"; String tableInfo = "user"; mapSource.addSink(new MyFlinkSinkToKudu(kuduMasterAddr, tableInfo)); env.execute("SinkToKuduTest"); } }
解释分析
环境设置
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();:初始化 Flink 的执行环境,这是 Flink 应用的入口。
数据源创建
DataStreamSource dataSource = env.fromElements(…):创建了一个包含多个 UserInfo 对象的数据源,模拟了一个输入流。
数据转换
SingleOutputStreamOperator<Map<String, Object>> mapSource = dataSource.map(…):使用 map 函数将 UserInfo 对象转换为 Map<String, Object>,便于后续处理和写入 Kudu。每个 UserInfo 的属性都被放入一个 HashMap 中。
Kudu 配置信息
String kuduMasterAddr = “localhost:7051,localhost:7151,localhost:7251”; 和 String tableInfo = “user”;:定义 Kudu 的主节点地址和目标表的信息。
数据下沉
mapSource.addSink(new MyFlinkSinkToKudu(kuduMasterAddr, tableInfo));:将转换后的数据流添加到 Kudu 的自定义 Sink 中。MyFlinkSinkToKudu 类应该实现了将数据写入 Kudu 的逻辑。
执行作业
env.execute(“SinkToKuduTest”);:启动 Flink 作业,执行整个数据流处理流程。
测试运行
先运行建表
再运行主逻辑
我们建表之后,确认user表存在。然后我们运行Flink程序,将数据写入Kudu。
确认有表后,执行 Flink 程序:
注意事项
并发性:根据 Kudu 集群的规模和配置,可以调整 Flink 作业的并发性,以提高写入性能。
批量写入:Kudu 支持批量插入,可以通过适当配置 Flink 的 sink 来提高性能。
故障处理:确保在作业中处理异常和重试逻辑,以确保数据不会丢失。
监控与调试:使用 Flink 的监控工具和 Kudu 的工具(如 Kudu UI)来监控数据流和性能。