大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(已更完)

Flink(已更完)

ClickHouse(已更完)

Kudu(正在更新…)

章节内容

上节我们完成了如下的内容:


Kudu Java API

增删改查 编写案例测试

实现思路

将数据从 Flink 下沉到 Kudu 的基本思路如下:


环境准备:确保 Flink 和 Kudu 环境正常运行,并配置好相关依赖。

创建 Kudu 表:在 Kudu 中定义要存储的数据表,包括主键和列类型。

数据流设计:使用 Flink 的 DataStream API 读取输入数据流,进行必要的数据处理和转换。

写入 Kudu:通过 Kudu 的连接器将处理后的数据写入 Kudu 表。需要配置 Kudu 客户端和表的相关信息。

执行作业:启动 Flink 作业,实时将数据流中的数据写入 Kudu,便于后续查询和分析。

添加依赖

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>flink-test</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>11</maven.compiler.source>
        <maven.compiler.target>11</maven.compiler.target>
        <flink.version>1.11.1</flink.version>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.kudu</groupId>
            <artifactId>kudu-client</artifactId>
            <version>1.17.0</version>
        </dependency>

    </dependencies>
</project>

数据源

new UserInfo("001", "Jack", 18),
new UserInfo("002", "Rose", 20),
new UserInfo("003", "Cris", 22),
new UserInfo("004", "Lily", 19),
new UserInfo("005", "Lucy", 21),
new UserInfo("006", "Json", 24),

自定义下沉器

package icu.wzk.kudu;

import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.kudu.Schema;
import org.apache.kudu.Type;
import org.apache.kudu.client.*;
import org.apache.log4j.Logger;

import java.io.ByteArrayOutputStream;
import java.io.ObjectOutputStream;
import java.util.Map;


public class MyFlinkSinkToKudu extends RichSinkFunction<Map<String, Object>> {

    private final static Logger logger = Logger.getLogger("MyFlinkSinkToKudu");

    private KuduClient kuduClient;
    private KuduTable kuduTable;

    private String kuduMasterAddr;
    private String tableName;
    private Schema schema;
    private KuduSession kuduSession;
    private ByteArrayOutputStream out;
    private ObjectOutputStream os;

    public MyFlinkSinkToKudu(String kuduMasterAddr, String tableName) {
        this.kuduMasterAddr = kuduMasterAddr;
        this.tableName = tableName;
    }

    @Override
    public void open(Configuration parameters) throws Exception {
        out = new ByteArrayOutputStream();
        os = new ObjectOutputStream(out);
        kuduClient = new KuduClient.KuduClientBuilder(kuduMasterAddr).build();
        kuduTable = kuduClient.openTable(tableName);
        schema = kuduTable.getSchema();
        kuduSession = kuduClient.newSession();
        kuduSession.setFlushMode(KuduSession.FlushMode.AUTO_FLUSH_BACKGROUND);
    }

    @Override
    public void invoke(Map<String, Object> map, Context context) throws Exception {
        if (null == map) {
            return;
        }
        try {
            int columnCount = schema.getColumnCount();
            Insert insert = kuduTable.newInsert();
            PartialRow row = insert.getRow();
            for (int i = 0; i < columnCount; i ++) {
                Object value = map.get(schema.getColumnByIndex(i).getName());
                insertData(row, schema.getColumnByIndex(i).getType(), schema.getColumnByIndex(i).getName(), value);
                OperationResponse response = kuduSession.apply(insert);
                if (null != response) {
                    logger.error(response.getRowError().toString());
                }
            }
        } catch (Exception e) {
            logger.error(e);
        }
    }

    @Override
    public void close() throws Exception {
        try {
            kuduSession.close();
            kuduClient.close();
            os.close();
            out.close();
        } catch (Exception e) {
            logger.error(e);
        }
    }

    private void insertData(PartialRow row, Type type, String columnName, Object value) {
        try {
            switch (type) {
                case STRING:
                    row.addString(columnName, value.toString());
                    return;
                case INT32:
                    row.addInt(columnName, Integer.valueOf(value.toString()));
                    return;
                case INT64:
                    row.addLong(columnName, Long.valueOf(value.toString()));
                    return;
                case DOUBLE:
                    row.addDouble(columnName, Double.valueOf(value.toString()));
                    return;
                case BOOL:
                    row.addBoolean(columnName, Boolean.valueOf(value.toString()));
                    return;
                case BINARY:
                    os.writeObject(value);
                    row.addBinary(columnName, out.toByteArray());
                    return;
                case FLOAT:
                    row.addFloat(columnName, Float.valueOf(value.toString()));
                default:
                    throw new UnsupportedOperationException("Unknown Type: " + type);
            }

        } catch (Exception e) {
            logger.error("插入数据异常: " + e);
        }
    }
}

编写实体

package icu.wzk.kudu;

public class UserInfo {

    private String id;

    private String name;

    private Integer age;

    public UserInfo(String id, String name, Integer age) {
        this.id = id;
        this.name = name;
        this.age = age;
    }

    public String getId() {
        return id;
    }

    public void setId(String id) {
        this.id = id;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public Integer getAge() {
        return age;
    }

    public void setAge(Integer age) {
        this.age = age;
    }
}

执行建表

package icu.wzk.kudu;

import org.apache.kudu.ColumnSchema;
import org.apache.kudu.Schema;
import org.apache.kudu.Type;
import org.apache.kudu.client.CreateTableOptions;
import org.apache.kudu.client.KuduClient;
import org.apache.kudu.client.KuduException;

import java.util.ArrayList;
import java.util.List;

public class KuduCreateTable {

    public static void main(String[] args) throws KuduException {
        String masterAddress = "localhost:7051,localhost:7151,localhost:7251";
        KuduClient.KuduClientBuilder kuduClientBuilder = new KuduClient.KuduClientBuilder(masterAddress);
        KuduClient kuduClient = kuduClientBuilder.build();

        String tableName = "user";
        List<ColumnSchema> columnSchemas = new ArrayList<>();
        ColumnSchema id = new ColumnSchema
                .ColumnSchemaBuilder("id", Type.INT32)
                .key(true)
                .build();
        columnSchemas.add(id);
        ColumnSchema name = new ColumnSchema
                .ColumnSchemaBuilder("name", Type.STRING)
                .key(false)
                .build();
        columnSchemas.add(name);
        ColumnSchema age = new ColumnSchema
                .ColumnSchemaBuilder("age", Type.INT32)
                .key(false)
                .build();
        columnSchemas.add(age);

        Schema schema = new Schema(columnSchemas);
        CreateTableOptions options = new CreateTableOptions();
        // 副本数量为1
        options.setNumReplicas(1);
        List<String> colrule = new ArrayList<>();
        colrule.add("id");
        options.addHashPartitions(colrule, 3);

        kuduClient.createTable(tableName, schema, options);
        kuduClient.close();
    }

}

主逻辑代码

package icu.wzk.kudu;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

import java.util.HashMap;
import java.util.Map;
import java.util.stream.Stream;

public class SinkToKuduTest {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStreamSource<UserInfo> dataSource = env.fromElements(
                new UserInfo("001", "Jack", 18),
                new UserInfo("002", "Rose", 20),
                new UserInfo("003", "Cris", 22),
                new UserInfo("004", "Lily", 19),
                new UserInfo("005", "Lucy", 21),
                new UserInfo("006", "Json", 24)
        );
        SingleOutputStreamOperator<Map<String, Object>> mapSource = dataSource
                .map(new MapFunction<UserInfo, Map<String, Object>>() {
                    @Override
                    public Map<String, Object> map(UserInfo value) throws Exception {
                        Map<String, Object> map = new HashMap<>();
                        map.put("id", value.getId());
                        map.put("name", value.getName());
                        map.put("age", value.getAge());
                        return map;
                    }
                });

        String kuduMasterAddr = "localhost:7051,localhost:7151,localhost:7251";
        String tableInfo = "user";
        mapSource.addSink(new MyFlinkSinkToKudu(kuduMasterAddr, tableInfo));

        env.execute("SinkToKuduTest");
    }

}

解释分析

环境设置

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();:初始化 Flink 的执行环境,这是 Flink 应用的入口。


数据源创建

DataStreamSource dataSource = env.fromElements(…):创建了一个包含多个 UserInfo 对象的数据源,模拟了一个输入流。


数据转换

SingleOutputStreamOperator<Map<String, Object>> mapSource = dataSource.map(…):使用 map 函数将 UserInfo 对象转换为 Map<String, Object>,便于后续处理和写入 Kudu。每个 UserInfo 的属性都被放入一个 HashMap 中。


Kudu 配置信息

String kuduMasterAddr = “localhost:7051,localhost:7151,localhost:7251”; 和 String tableInfo = “user”;:定义 Kudu 的主节点地址和目标表的信息。


数据下沉

mapSource.addSink(new MyFlinkSinkToKudu(kuduMasterAddr, tableInfo));:将转换后的数据流添加到 Kudu 的自定义 Sink 中。MyFlinkSinkToKudu 类应该实现了将数据写入 Kudu 的逻辑。


执行作业

env.execute(“SinkToKuduTest”);:启动 Flink 作业,执行整个数据流处理流程。


测试运行

先运行建表

再运行主逻辑

我们建表之后,确认user表存在。然后我们运行Flink程序,将数据写入Kudu。

确认有表后,执行 Flink 程序:

注意事项

并发性:根据 Kudu 集群的规模和配置,可以调整 Flink 作业的并发性,以提高写入性能。

批量写入:Kudu 支持批量插入,可以通过适当配置 Flink 的 sink 来提高性能。

故障处理:确保在作业中处理异常和重试逻辑,以确保数据不会丢失。

监控与调试:使用 Flink 的监控工具和 Kudu 的工具(如 Kudu UI)来监控数据流和性能。


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
146 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
消息中间件 分布式计算 大数据
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
86 5
zdl
|
1月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
166 56
|
2月前
|
SQL 分布式计算 NoSQL
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
39 1
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
|
1月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
72 1
|
2月前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
66 1
|
2月前
|
存储 大数据 分布式数据库
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
50 1
|
2月前
|
消息中间件 分布式计算 Kafka
大数据平台的毕业设计02:Spark与实时计算
大数据平台的毕业设计02:Spark与实时计算
124 0
|
2月前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
147 0
|
SQL 架构师 API
《Apache Flink 知其然,知其所以然》系列视频课程
# 课程简介 目前在我的公众号新推出了《Apache Flink 知其然,知其所以然》的系列视频课程。在内容上会先对Flink整体架构和所适用的场景做一个基础介绍,让你对Flink有一个整体的认识!然后对核心概念进行详细介绍,让你深入了解流计算中一些核心术语的含义,然后对Flink 各个层面的API,如 SQL/Table&DataStreamAPI/PythonAPI 进行详细的介绍,以及
1373 0
《Apache Flink 知其然,知其所以然》系列视频课程

推荐镜像

更多