大数据-147 Apache Kudu 常用 Java API 增删改查

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-147 Apache Kudu 常用 Java API 增删改查

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(已更完)

Flink(已更完)

ClickHouse(已更完)

Kudu(正在更新…)

章节内容

上节我们完成了如下的内容:


Apache Kudu 的 Dockerfile

Dockerfile 详解

Kudu 启动访问

新建工程

由于重复了太多次,这里直接跳过了。

导入依赖

<dependency>
  <groupId>org.apache.kudu</groupId>
  <artifactId>kudu-client</artifactId>
  <version>1.4.0</version>
</dependency>

创建新表

  • 必须指定表连接到的Master节点主机名
  • 必须定义Schema
  • 必须指定副本数量、分区策略、数量

编写代码

package icu.wzk.kudu;

import org.apache.kudu.ColumnSchema;
import org.apache.kudu.Schema;
import org.apache.kudu.Type;
import org.apache.kudu.client.CreateTableOptions;
import org.apache.kudu.client.KuduClient;
import org.apache.kudu.client.KuduException;

import java.util.ArrayList;
import java.util.List;

public class KuduCreateTable {

    public static void main(String[] args) throws KuduException {
        String masterAddress = "localhost:7051,localhost:7151,localhost:7251";
        KuduClient.KuduClientBuilder kuduClientBuilder = new KuduClient.KuduClientBuilder(masterAddress);
        KuduClient kuduClient = kuduClientBuilder.build();

        String tableName = "student";
        List<ColumnSchema> columnSchemas = new ArrayList<>();
        ColumnSchema id = new ColumnSchema
                .ColumnSchemaBuilder("id", Type.INT32)
                .key(true)
                .build();
        columnSchemas.add(id);
        ColumnSchema name = new ColumnSchema
                .ColumnSchemaBuilder("name", Type.STRING)
                .key(false)
                .build();
        columnSchemas.add(name);

        Schema schema = new Schema(columnSchemas);
        CreateTableOptions options = new CreateTableOptions();
        // 副本数量为1
        options.setNumReplicas(1);
        List<String> colrule = new ArrayList<>();
        colrule.add("id");
        options.addHashPartitions(colrule, 3);

        kuduClient.createTable(tableName, schema, options);
        kuduClient.close();
    }

}

测试运行

控制台未输出内容

运行结果如下图所示:

查看Kudu

我们查看Kudu的Tables,可以看到刚才创建的表如下:

删除表

编写代码

package icu.wzk.kudu;

import org.apache.kudu.client.KuduClient;
import org.apache.kudu.client.KuduException;

public class KuduDeleteTable {

    public static void main(String[] args) throws KuduException {
        String masterAddress = "localhost:7051,localhost:7151,localhost:7251,";
        KuduClient client = new KuduClient.KuduClientBuilder(masterAddress)
                .defaultAdminOperationTimeoutMs(5000)
                .build();
        client.deleteTable("student");
        client.close();
    }

}

测试运行

控制台没有输出内容,这里运行截图如下:

查看Kudu

查看Kudu服务的 Table 页,里边的数据表已经删除了。

插入数据

  • 获取客户端
  • 打开一张表
  • 创建会话
  • 设置刷新模式
  • 获取插入实例
  • 声明带插入的数据
  • 刷入数据
  • 应用插入实例
  • 关闭会话

创建新表

我们运行刚才的创建新表代码,把student表先生成出来,具体运行这里跳过了。

编写代码

package icu.wzk.kudu;

import org.apache.kudu.client.*;

public class KuduInsert {

    public static void main(String[] args) throws KuduException {
        String masterAddr = "localhost:7051,localhost:7151,localhost:7251";
        KuduClient client = new KuduClient
                .KuduClientBuilder(masterAddr)
                .defaultAdminOperationTimeoutMs(5000)
                .build();
        KuduTable stuTable = client.openTable("student");
        KuduSession kuduSession = client.newSession();
        kuduSession.setFlushMode(SessionConfiguration.FlushMode.MANUAL_FLUSH);
        Insert insert = stuTable.newInsert();
        insert.getRow().addInt("id", 1);
        insert.getRow().addString("name", "wzk");
        kuduSession.flush();
        kuduSession.apply(insert);
        kuduSession.close();
        client.close();
    }

}

测试运行

控制台没有输出任何内容,运行过程截图如下:

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
1月前
|
消息中间件 分布式计算 大数据
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
大数据-166 Apache Kylin Cube 流式构建 整体流程详细记录
59 5
|
1月前
|
存储 SQL 分布式计算
大数据-162 Apache Kylin 全量增量Cube的构建 Segment 超详细记录 多图
大数据-162 Apache Kylin 全量增量Cube的构建 Segment 超详细记录 多图
55 3
|
11天前
|
监控 负载均衡 API
Apache Apisix轻松打造亿级流量Api网关
Apache APISIX 是一个动态、实时、高性能的 API 网关,提供负载均衡、动态上行、灰度发布、熔断、鉴权、可观测等丰富的流量管理功能。适用于处理传统南北向流量、服务间东西向流量及 k8s 入口控制。Airflow 是一个可编程、调度和监控的工作流平台,基于有向无环图 (DAG) 定义和执行任务,提供丰富的命令行工具和 Web 管理界面,方便系统运维和管理。
Apache Apisix轻松打造亿级流量Api网关
|
1天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
9 2
|
13天前
|
分布式计算 Java MaxCompute
ODPS MR节点跑graph连通分量计算代码报错java heap space如何解决
任务启动命令:jar -resources odps-graph-connect-family-2.0-SNAPSHOT.jar -classpath ./odps-graph-connect-family-2.0-SNAPSHOT.jar ConnectFamily 若是设置参数该如何设置
|
1月前
|
Java 大数据 数据库连接
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
27 2
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
|
1月前
|
SQL 分布式计算 NoSQL
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
26 1
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
|
16天前
|
Java API 数据处理
探索Java中的Lambda表达式与Stream API
【10月更文挑战第22天】 在Java编程中,Lambda表达式和Stream API是两个强大的功能,它们极大地简化了代码的编写和提高了开发效率。本文将深入探讨这两个概念的基本用法、优势以及在实际项目中的应用案例,帮助读者更好地理解和运用这些现代Java特性。
|
25天前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
34 1
|
1月前
|
SQL 分布式计算 大数据
大数据-160 Apache Kylin 构建Cube 按照日期构建Cube 详细记录
大数据-160 Apache Kylin 构建Cube 按照日期构建Cube 详细记录
39 2

推荐镜像

更多