大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(一)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(一)

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(已更完)

Flink(已更完)

ClickHouse(正在更新···)

章节内容

上节我们完成了如下的内容:


副本和分片

Distributed 部分

编码实际案例测试

基本介绍

ClickHouse 是一种用于 OLAP(在线分析处理)的列式数据库,因其高速数据处理能力在大数据分析中备受青睐。ClickHouse 的 SQL 语法与标准 SQL 类似,但由于其专注于分析场景,有一些特殊的扩展。ClickHouse 默认不支持直接 DELETE 或 UPDATE 操作,但可以通过分区管理和合并机制间接清理数据。ClickHouse 提供了很多专门为高效分析而设计的功能。ClickHouse 提供了丰富的聚合函数,如 sum()、avg()、min()、max()、count()。


基本 SQL 语法

ClickHouse 的 SQL 语法与标准 SQL 类似,但由于其专注于分析场景,有一些特殊的扩展。

创建表的时候:

CREATE TABLE table_name (
    column1 DataType,
    column2 DataType,
    ...
) ENGINE = MergeTree()
ORDER BY (primary_key_columns);

  • ENGINE:表引擎,最常用的是 MergeTree 系列。
  • ORDER BY:必须指定排序键,支持对大数据集高效查询。
  • PARTITION BY:按列进行分区(可选)。
  • SAMPLE BY:用于大数据量下的采样查询(可选)。

删除或清理表数据的时候:

ClickHouse 默认不支持直接 DELETE 或 UPDATE 操作,但可以通过分区管理和合并机制间接清理数据。

ALTER TABLE table_name DROP PARTITION partition_expr;

特殊功能

聚合函数

ClickHouse 提供了丰富的聚合函数,如 sum()、avg()、min()、max()、count()。此外,还有以下特殊聚合函数:

SELECT uniqExact(column) FROM table_name; -- 精确去重计数
SELECT quantiles(0.5, 0.9)(column) FROM table_name; -- 分位数计算

窗口函数

ClickHouse 支持窗口函数,但语法略有不同。常见窗口函数有 row_number()、rank() 等:

SELECT column, rowNumber() OVER (PARTITION BY partition_column ORDER BY sort_column) 
FROM table_name;

数组和嵌套类型

ClickHouse 支持数组和嵌套类型,适合处理复杂的数据结构:

SELECT arrayJoin(array) FROM table_name;

arrayJoin:将数组展开为多行

MergeTree 引擎

MergeTree 是 ClickHouse 最常用的引擎之一,具备排序、索引和分区的特性,能够高效处理海量数据。


ORDER BY:定义主键,数据按照该字段排序。

PRIMARY KEY:可以和 ORDER BY 一致,用于快速定位。

PARTITION BY:用于数据按逻辑分片,减少查询范围。

TTL:设置数据过期时间,自动清理历史数据。

基本状况

目前我是ClickHouse的集群环境:


h121.wzk.icu

h122.wzk.icu

h123.wzk.icu

建立连接

我们随机找一台建立链接

clickhouse-client -m --host h121.wzk.icu --port 9001 --user default --password clickhouse@wzk.icu

新建库

CREATE DATABASE mydatabase;
• 1

执行结果如下图所示:

可以看到对应的路径如下所示:

cd /var/lib/clickhouse/data
ls
• 1
• 2

执行结果如下图,可以看到我们刚才创建的数据库

查看数据库

SHOW DATABASES;
• 1

运行结果如下图:

新建表

# 方式1
CREATE TABLE my_table(
  title String,
  url String,
  eventTime DateTime
) ENGINE = Memory;

# 方式2
CREATE TABLE mydatabase.my_table(
  title String,
  url String,
  eventTime DateTime
) ENGINE = Memory;

# 方式3
CREATE TABLE mydatabase.my_table_2(
  title String,
  url String,
  eventTime DateTime
) ENGINE = Memory AS SELECT * FROM mydatabase.my_table;

执行结果如下图所示:

查表结构

DESC my_table;
• 1

执行结果如下图:

插入数据

INSERT INTO my_table VALUES ('wzk', '123', now());
• 1

执行的结果如下所示:

临时表

CREATE TABLE tmp_v1 (
  title String,
  create_time DateTime
) ENGINE = Memory;

如果临时表与正常表名字相同,临时表优先。

临时表的引擎只能是Memory,数据是临时的,断点数据就没了。

更多的是在ClickHouse内部,是数据在集群间传播度的载体。

分区表

创建新表

CREATE TABLE partition_v1 (
  `id` String,
  `url` String,
  `eventTime` Date
) ENGINE = MergeTree()
PARTITION BY toYYYYMM(eventTime)
ORDER BY id;

执行结果如下所示:

只有合并树(MergeTree)家族的表引擎支持分区表,可以利用分区表,做定位查询,缩小查询范围。分区字段不易设置的太小。

插入数据

INSERT INTO partition_v1 (id, url, eventTime) VALUES
('1', 'http://example.com/page1', '2024-01-01'),
('2', 'http://example.com/page2', '2024-01-15'),
('3', 'http://example.com/page3', '2024-02-01'),
('4', 'http://example.com/page4', '2024-02-15'),
('5', 'http://example.com/page5', '2024-03-01'),
('6', 'http://example.com/page6', '2024-03-15');

执行结果如下图所示:

接下篇:https://developer.aliyun.com/article/1623012

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
130 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
23天前
|
存储 消息中间件 分布式计算
Cisco WebEx 数据平台:统一 Trino、Pinot、Iceberg 及 Kyuubi,探索 Apache Doris 在 Cisco 的改造实践
Cisco WebEx 早期数据平台采用了多系统架构(包括 Trino、Pinot、Iceberg 、 Kyuubi 等),面临架构复杂、数据冗余存储、运维困难、资源利用率低、数据时效性差等问题。因此,引入 Apache Doris 替换了 Trino、Pinot 、 Iceberg 及 Kyuubi 技术栈,依赖于 Doris 的实时数据湖能力及高性能 OLAP 分析能力,统一数据湖仓及查询分析引擎,显著提升了查询性能及系统稳定性,同时实现资源成本降低 30%。
Cisco WebEx 数据平台:统一 Trino、Pinot、Iceberg 及 Kyuubi,探索 Apache Doris 在 Cisco 的改造实践
|
24天前
|
SQL 算法 大数据
为什么大数据平台会回归SQL
在大数据领域,尽管非结构化数据占据了大数据平台80%以上的存储空间,结构化数据分析依然是核心任务。SQL因其广泛的应用基础和易于上手的特点成为大数据处理的主要语言,各大厂商纷纷支持SQL以提高市场竞争力。然而,SQL在处理复杂计算时表现出的性能和开发效率低下问题日益凸显,如难以充分利用现代硬件能力、复杂SQL优化困难等。为了解决这些问题,出现了像SPL这样的开源计算引擎,它通过提供更高效的开发体验和计算性能,以及对多种数据源的支持,为大数据处理带来了新的解决方案。
|
1月前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
141 14
|
1月前
|
SQL 存储 算法
比 SQL 快出数量级的大数据计算技术
SQL 是大数据计算中最常用的工具,但在实际应用中,SQL 经常跑得很慢,浪费大量硬件资源。例如,某银行的反洗钱计算在 11 节点的 Vertica 集群上跑了 1.5 小时,而用 SPL 重写后,单机只需 26 秒。类似地,电商漏斗运算和时空碰撞任务在使用 SPL 后,性能也大幅提升。这是因为 SQL 无法写出低复杂度的算法,而 SPL 提供了更强大的数据类型和基础运算,能够实现高效计算。
|
1月前
|
边缘计算 人工智能 搜索推荐
大数据与零售业:精准营销的实践
【10月更文挑战第31天】在信息化社会,大数据技术正成为推动零售业革新的重要驱动力。本文探讨了大数据在零售业中的应用,包括客户细分、个性化推荐、动态定价、营销自动化、预测性分析、忠诚度管理和社交网络洞察等方面,通过实际案例展示了大数据如何帮助商家洞悉消费者行为,优化决策,实现精准营销。同时,文章也讨论了大数据面临的挑战和未来展望。
|
1月前
|
分布式计算 大数据 BI
ClickHouse与大数据生态整合:从ETL到BI报表
【10月更文挑战第27天】在这个数据驱动的时代,企业越来越依赖于数据来做出关键决策。而高效的数据处理和分析能力则是支撑这一需求的基础。作为一位数据工程师,我有幸参与到一个项目中,该项目旨在利用ClickHouse与Hadoop、Spark、Flink等大数据处理框架的整合,构建一个从数据提取(Extract)、转换(Transform)、加载(Load)到最终生成商业智能(BI)报表的全流程解决方案。以下是我在这个项目中的经验和思考。
78 1
|
2月前
|
SQL 关系型数据库 MySQL
Go语言项目高效对接SQL数据库:实践技巧与方法
在Go语言项目中,与SQL数据库进行对接是一项基础且重要的任务
90 11
|
2月前
|
SQL 存储 关系型数据库
添加数据到数据库的SQL语句详解与实践技巧
在数据库管理中,添加数据是一个基本操作,它涉及到向表中插入新的记录
|
1月前
|
存储 Prometheus 监控
构建高可用性ClickHouse集群:从理论到实践
【10月更文挑战第27天】在数据驱动的时代,构建一个稳定、高效的数据库系统对于企业的业务发展至关重要。作为一名数据工程师,我深知数据库系统的高可用性和可扩展性对于支撑企业应用的重要性。在这篇文章中,我将分享如何构建一个高可用性的ClickHouse集群,从分布式表的设计到数据复制与分片,再到故障恢复机制,确保系统在大规模数据处理中的稳定性和可靠性。
75 0
下一篇
DataWorks