大数据-142 - ClickHouse 集群 副本和分片 Distributed 附带案例演示

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生网关 MSE Higress,422元/月
简介: 大数据-142 - ClickHouse 集群 副本和分片 Distributed 附带案例演示

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(已更完)

Flink(已更完)

ClickHouse(正在更新···)

章节内容

上节我们完成了如下的内容:


副本和分片,上节主要是副本的部分

Zk 的配置

Replicated MergeTree原理详解

分片部分

副本(Replica)

概念:副本是指在多个节点之间复制相同的数据,确保即使某个节点发生故障,数据仍然可以从其他节点访问。副本提升了数据的高可用性和容错能力。

目的:如果某个节点宕机,查询可以从其他副本节点读取数据,保证系统的高可用性。同时,副本还可以均衡负载,在高并发查询时,副本节点可以分担查询压力。

实现:每个分片的副本节点存储相同的数据,ClickHouse 提供自动的副本同步机制,在节点恢复或新增副本时,数据会自动同步。

副本节点使用 ZooKeeper 进行协调,确保数据的写入在副本之间一致,并自动管理副本间的同步操作。

配置:副本通常通过 ReplicatedMergeTree 表引擎来实现,表的路径和副本 ID 由 ZooKeeper 进行管理。

Distributed 表

概念:Distributed 表是一种特殊的表类型,它不直接存储数据,而是将查询转发到多个分片或副本表中。这使得用户可以对多个节点执行统一的查询。

目的:通过 Distributed 表,可以将查询透明地分发到各个分片和副本上,最大化利用集群的并行处理能力。它简化了跨节点、跨分片查询的复杂性。

实现:在定义 Distributed 表时,需要指定目标集群、数据库和底层存储表的名字。

查询 Distributed 表时,ClickHouse 会根据分片键(如果存在)将查询转发到各个分片执行,并将各分片的结果汇总返回。

Distributed 表可以自动处理分片和副本的负载均衡。


分片、副本与 Distributed 表的组合

分片与副本的组合:通过分片,集群可以水平扩展,而通过副本,集群能够实现高可用性。当一个集群有多个分片和副本时,ClickHouse 会首先将数据分片,确保每个分片在不同的服务器上;每个分片的数据会有多个副本,副本分布在不同的节点上。

查询策略:查询通常会通过 Distributed 表执行。ClickHouse 会自动选择一个副本来读取数据,如果某个副本不可用,它会自动切换到其他可用副本上。查询时,可以利用并行处理,在多个分片上同时进行查询计算,提升整体查询性能。

副本一致性:当数据写入到副本时,ClickHouse 使用强一致性协议,确保每个副本在写入时数据是相同的。通过 ZooKeeper 管理副本的同步和协调,副本在恢复后可以从其他节点拉取丢失的数据。

优点与挑战

优点

高可用性:通过副本机制,即使某个节点宕机,查询和数据仍然可用。

可扩展性:分片机制允许系统在大规模数据场景下水平扩展。

高性能:Distributed 表的并行查询处理机制大大提升了查询速度,尤其在多分片、多节点的环境下。

挑战

管理复杂性:集群、分片、副本、ZooKeeper 之间的协调关系比较复杂,配置和维护需要较高的技术能力。

数据延迟:虽然副本同步机制较为强大,但在某些极端情况下,副本之间可能存在数据延迟。

配置文件

我们配置集群的时候,已经配置过了。

这里我把配置文件在粘贴到这里一次:(记得端口的事情)

<yandex>
  <remote_servers>
    <perftest_3shards_1replicas>
      <shard>
        <internal_replication>true</internal_replication>
        <replica>
          <host>h121.wzk.icu</host>
          <port>9000</port>
          <user>default</user>
          <password>clickhouse@wzk.icu</password>
        </replica>
      </shard>
      <shard>
        <internal_replication>true</internal_replication>
        <replica>
          <host>h122.wzk.icu</host>
          <port>9000</port>
          <user>default</user>
          <password>clickhouse@wzk.icu</password>
        </replica>
      </shard>
      <shard>
        <internal_replication>true</internal_replication>
        <replica>
          <host>h123.wzk.icu</host>
          <port>9000</port>
          <user>default</user>
          <password>clickhouse@wzk.icu</password>
        </replica>
      </shard>
    </perftest_3shards_1replicas>
  </remote_servers>
  <zookeeper-servers>
    <node index="1">
      <host>h121.wzk.icu</host>
      <port>2181</port>
    </node>
    <node index="2">
      <host>h122.wzk.icu</host>
      <port>2181</port>
    </node>
    <node index="3">
      <host>h123.wzk.icu</host>
      <port>2181</port>
    </node>
  </zookeeper-servers>
  <macros>
    <shard>01</shard>
    <replica>h121.wzk.icu</replica>
  </macros>
  <networks>
    <ip>::/0</ip>
  </networks>
  <clickhouse_compression>
    <case>
      <min_part_size>10000000000</min_part_size>
      <min_part_size_ratio>0.01</min_part_size_ratio>
      <method>lz4</method>
    </case>
  </clickhouse_compression>
</yandex>

Distributed用法

Distributed表引擎

  • all 全局查询
  • local 真正的保存数据的表

Distributed

分布式引擎,本身不存储数据,但可以在多个服务器上进行分布式查询。

读是自动并行的,读取时,远程服务器表的索引(如果有的话)会被使用。

指令是:

Distributed(cluster_name, database, table [, sharding_key])

参数解析:

  • cluster_name 服务器配置文件中的集群名,在我们配置的metrika.xml中
  • database 数据库名
  • table 表名
  • sharding_key 数据分片键

案例演示

创建新表

在3台节点上的t表插入新建表

注意:是三台节点都要!!!

CREATE TABLE test_tiny_log(
  id UInt16,
  name String
) ENGINE = TinyLog;

执行结果如下图所示:

插入数据

在3台节点上的t表插入一些数据

注意:是三台节点都要!!!

INSERT INTO test_tiny_log VALUES (1, 'wzk');
INSERT INTO test_tiny_log VALUES (2, 'icu');

SELECT
  *
FROM
  test_tiny_log

执行结果如下图所示:

分布式表

CREATE TABLE dis_table(
  id UInt16,
  name String
) ENGINE = Distributed(perftest_3shards_1replicas, default, test_tiny_log, id);

执行代码如下:

插入数据

INSERT INTO dis_table SELECT * FROM test_tiny_log;
• 1

插入我们刚才准备的数据:

查询数据

select count() from dis_table;
• 1

运行结束后,对应的截图如下所示:

查看每台节点的数据:

SELECT COUNT() FROM test_tiny_log;
• 1

执行结果如下图:

h121节点的返回:

h122节点的返回:

h123节点的返回:

可以看到三台的总数量(2 + 3 + 3)等于我们的分布式表dis_table(8)的数量,每个节点大约有 1/3 的数据。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
1月前
|
存储 分布式计算 druid
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
39 1
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
zdl
|
7天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
31 0
|
1月前
|
分布式计算 大数据 分布式数据库
大数据-158 Apache Kylin 安装配置详解 集群模式启动(一)
大数据-158 Apache Kylin 安装配置详解 集群模式启动(一)
43 5
|
1月前
|
SQL 分布式计算 NoSQL
大数据-170 Elasticsearch 云服务器三节点集群搭建 测试运行
大数据-170 Elasticsearch 云服务器三节点集群搭建 测试运行
41 4
|
1月前
|
存储 JSON 监控
大数据-167 ELK Elasticsearch 详细介绍 特点 分片 查询
大数据-167 ELK Elasticsearch 详细介绍 特点 分片 查询
52 4
|
1月前
|
资源调度 大数据 分布式数据库
大数据-158 Apache Kylin 安装配置详解 集群模式启动(二)
大数据-158 Apache Kylin 安装配置详解 集群模式启动(二)
40 2
|
19天前
|
存储 Prometheus 监控
构建高可用性ClickHouse集群:从理论到实践
【10月更文挑战第27天】在数据驱动的时代,构建一个稳定、高效的数据库系统对于企业的业务发展至关重要。作为一名数据工程师,我深知数据库系统的高可用性和可扩展性对于支撑企业应用的重要性。在这篇文章中,我将分享如何构建一个高可用性的ClickHouse集群,从分布式表的设计到数据复制与分片,再到故障恢复机制,确保系统在大规模数据处理中的稳定性和可靠性。
49 0
|
20天前
|
存储 监控 大数据
构建高可用性ClickHouse集群:从单节点到分布式
【10月更文挑战第26天】随着业务的不断增长,单一的数据存储解决方案可能无法满足日益增加的数据处理需求。在大数据时代,数据库的性能、可扩展性和稳定性成为企业关注的重点。ClickHouse 是一个用于联机分析处理(OLAP)的列式数据库管理系统(DBMS),以其卓越的查询性能和高吞吐量而闻名。本文将从我的个人角度出发,分享如何将单节点 ClickHouse 扩展为高可用性的分布式集群,以提升系统的稳定性和可靠性。
47 0
|
1月前
|
存储 关系型数据库 MySQL
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB区别,适用场景
一个项目用5款数据库?MySQL、PostgreSQL、ClickHouse、MongoDB——特点、性能、扩展性、安全性、适用场景比较
|
1月前
|
存储 分布式计算 数据库
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版
阿里云国际版设置数据库云分析工作负载的 ClickHouse 版