大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析

简介: 大数据-124 - Flink State 01篇 状态原理和原理剖析:状态类型 执行分析

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(已更完)

Flink(正在更新!)

章节内容

上节我们完成了如下的内容:


Flink 并行度

Flink 并行度详解

Flink 并行度 案例

状态类型

Flink根据是否需要保存中间结果,把计算分为有状态计算和无状态计算。


有状态计算:依赖之前或之后的事件

无状态计算:独立

根据数据结构不同,Flink定义了多种State,应用于不同的场景。


ValueState:即类型为T的单值状态,这个状态与对应的Key绑定,是最简单的状态了。它可以通过update方法更新状态值,通过 value() 方法获取状态值

ListState:即Key上的状态值为一个列表,可以通过add方法往列表中附加值,也可以通过get()方法返回一个Iterable来遍历状态值

ReducingState:这种状态通过用户传入的ReduceFunction,每次调用add方法添加值的时候,会调用ReduceFunction,最后合并到一个单一的状态值。

FoldingState:跟ReducingState有点类似,不过它的状态值类型可以与add方法中传入的元素类型不同(这种状态会在未来的Flink版本当中删除)

MapState:即状态值为一个Map,用户通过put和putAll方法添加元素

State按照是否有Key划分为:


KeyedState

OperatorState

案例1 利用State求平均值

实现思路

读数据源

将数据源根据Key分组

按照Key分组策略,对流式数据调用状态化处理:实例化出一个状态实例,随着流式数据的到来更新状态,最后输出结果

编写代码

package icu.wzk;

import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;


public class FlinkStateTest01 {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        DataStreamSource<Tuple2<Long, Long>> data = env
                .fromElements(
                        Tuple2.of(1L, 3L),
                        Tuple2.of(1L, 5L),
                        Tuple2.of(1L, 7L),
                        Tuple2.of(1L, 4L),
                        Tuple2.of(1L, 2L)
                );
        KeyedStream<Tuple2<Long, Long>, Long> keyed = data
                .keyBy(new KeySelector<Tuple2<Long, Long>, Long>() {
                    @Override
                    public Long getKey(Tuple2<Long, Long> value) throws Exception {
                        return value.f0;
                    }
                });
        SingleOutputStreamOperator<Tuple2<Long, Long>> flatMapped = keyed
                .flatMap(new RichFlatMapFunction<Tuple2<Long, Long>, Tuple2<Long, Long>>() {
                    private transient ValueState<Tuple2<Long, Long>> sum;

                    @Override
                    public void flatMap(Tuple2<Long, Long> value, Collector<Tuple2<Long, Long>> out) throws Exception {
                        Tuple2<Long, Long> currentSum = sum.value();
                        if (currentSum == null) {
                            currentSum = Tuple2.of(0L, 0L);
                        }
                        // 更新
                        currentSum.f0 += 1L;
                        currentSum.f1 += value.f1;
                        System.out.println("currentValue: " + currentSum);
                        // 更新状态值
                        sum.update(currentSum);
                        // 如果 count >= 5 清空状态值 重新计算
                        if (currentSum.f0 >= 5) {
                            out.collect(new Tuple2<>(value.f0, currentSum.f1 / currentSum.f0));
                            sum.clear();
                        }
                    }

                    @Override
                    public void open(Configuration parameters) throws Exception {
                        ValueStateDescriptor<Tuple2<Long, Long>> descriptor = new ValueStateDescriptor<>(
                                "average",
                                TypeInformation.of(new TypeHint<Tuple2<Long, Long>>() {})
                        );
                        sum = getRuntimeContext().getState(descriptor);
                    }
                });
        flatMapped.print();
        env.execute("Flink State Test");
    }
}

运行结果

执行分析

Keyed State

表示和Key相关的一种State, 只能用于KeyedStream类型数据集对应的Function和Operator之上,KeyedState是OperatorState的特例,区别在于KeyedState事先按照Key对数据集进行了区分,每个KeyState仅对应一个Operator和Key的组合。


KeyedState可以通过KeyGroups进行管理,主要用于当算子并行度发生变化时,自动重新分布KeyedState数据。在系统运行过程中,一个Keyed算子实例可能运行一个或者多个KeyGroups的Keys。


Operator State

与 Keyed State 不同的是,Operator State 只和并行的算子实例绑定,和数据元素中的Key无关,每个算子实例中持有所有数据元素中的一部分状态数据。Operator State 支持算子实例并行度发生变化时自动重新分配状态数据。


同时在Flink中KeyedState和OperatorState均具有两种形式,其中一种为托管状态(Managed State)形式,由FlinkRuntime中控制和管理状态数据,并将状态数据转换为内存HashTables或RocksDB的对象存储,然后将这些状态数据通过内部的接口持久话到CheckPoints中,任务异常时可以通过这些状态数据恢复任务。另外一种是原生状态(Row State)形式,由算子自己管理数据结构,当触发CheckPoint中,当从CheckPoint恢复任务时,算子自己再返序列化出状态的数据结构。


DataStreamAPI支持使用ManagedState和RawState两种状态形式,在Flink中推荐用户使用ManagedState管理状态数据,主要原因是ManagedState能够更好地支持状态数据的重平衡以及更加完善的内存管理。

状态描述

State既然是暴露给用户的,那么就需要有一些属性需要指定:

  • State名称
  • Value Serializer
  • State Type Info

在对应的StateBackend中,会去调用对应的create方法获取到stateDescriptor中的值。

Flink通过StateDescriptor来定义一个状态,这是一个抽象类,内部定义了状态名称、类型、序列化器等基础信息,与上面的状态对应,从StateDescriptor派生ValueStateDescriptor、ListStateDescriptor等等


ValueState getState(ValueStateDescriptor)

ReducingState getReducingState(ReducingStateDescriptor)

ListState getListState(ListStateDescriptor)

FoldingState getFoldingState(FoldingStateDescriptor)

MapState getMapState(MapStateDescriptot)


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
3月前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
4月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
5月前
|
数据采集 人工智能 分布式计算
ODPS在AI时代的发展战略与技术演进分析报告
ODPS(现MaxCompute)历经十五年发展,从分布式计算平台演进为AI时代的数据基础设施,以超大规模处理、多模态融合与Data+AI协同为核心竞争力,支撑大模型训练与实时分析等前沿场景,助力企业实现数据驱动与智能化转型。
435 4
|
5月前
|
JSON 大数据 API
巧用苏宁易购 API,精准分析苏宁易购家电销售大数据
在数据驱动的电商时代,精准分析销售数据能助力企业优化库存、提升营销效果。本文详解如何利用苏宁易购API获取家电销售数据,结合Python进行数据清洗与统计分析,实现销量预测与洞察提取,帮助企业降本增效。
139 0
|
6月前
|
消息中间件 NoSQL 数据可视化
数据说了算,可你得“听得快”——聊聊大数据里的实时分析
数据说了算,可你得“听得快”——聊聊大数据里的实时分析
164 2
|
4月前
|
存储 SQL 分布式计算
终于!大数据分析不用再“又要快又要省钱”二选一了!Dataphin新功能太香了!
Dataphin推出查询加速新功能,支持用StarRocks等引擎直连MaxCompute或Hadoop查原始数据,无需同步、秒级响应。数据只存一份,省成本、提效率,权限统一管理,打破“又要快又要省”的不可能三角,助力企业实现分析自由。
250 49
|
3月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
3月前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
4月前
|
存储 SQL 分布式计算
MaxCompute 聚簇优化推荐原理
基于历史查询智能推荐Clustered表,显著降低计算成本,提升数仓性能。
301 4
MaxCompute 聚簇优化推荐原理