大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(一)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据-101 Spark Streaming DStream转换 窗口操作状态 跟踪操作 附带多个案例(一)

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(正在更新!)

章节内容

上节我们完成了如下的内容:


Spark Streaming DStream 转换函数

DStream 无状态转换

DStream 无状态转换 案例

c455671bf4f32c2e1d5d83aeca056f4d_6448f21c80244b6cbe97681f675fe93a.png 转换方式

有两个类型:


无状态转换(已经完成)

有状态转换

接下来开始有状态转换。


有状态转换

有状态转换主要有两种:


窗口操作

状态跟踪操作

窗口操作

Window Operations 可以设置窗口大小和滑动窗口间隔来动态获取当前Streaming的状态

基于窗口的操作会在一个比 StreamingContext 的 batchDuration(批次间隔)更长的时间范围内,通过整合多个批次的结果,计算出整个窗口的结果。

563e7dde3d00065e456ba29dfcb0dcbc_36b4631a4bb742259fab4b45bea3cbaa.png 基于窗口的操作需要两个参数:


窗口长度(Window Duration):控制每次计算最近的多少个批次的数据

滑动间隔(Slide Duration):用来控制对新的 DStream 进行计算的间隔

两者都必须是StreamingContext中批次间隔(batchDuration)的整数倍


准备编码

我们先编写一个每秒发送一个数字:

package icu.wzk

import java.io.PrintWriter
import java.net.{ServerSocket, Socket}

object SocketWithWindow {

  def main(args: Array[String]): Unit = {
    val port = 9999
    val ss = new ServerSocket(port)
    val socket: Socket = ss.accept()
    var i = 0
    while (true) {
      i += 1
      val out = new PrintWriter(socket.getOutputStream)
      out.println(i)
      out.flush()
      Thread.sleep(1000)
    }
  }
}

[窗口操作] 案例2观察窗口数据

  • 观察窗口的数据
  • 观察 batchDuration、windowDuration、slideDuration 三者之间的关系
  • 使用窗口相关的操作

编写代码

package icu.wzk

import org.apache.spark.SparkConf
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}

object WindowDemo {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setAppName("WindowDemo")
      .setMaster("local[*]")

    val ssc = new StreamingContext(conf, Seconds(5))
    ssc.sparkContext.setLogLevel("WARN")

    val lines: ReceiverInputDStream[String] = ssc.socketTextStream("localhost", 9999)
    lines.foreachRDD {
      (rdd, time) => {
        println(s"rdd = ${rdd.id}; time = $time")
      }
        rdd.foreach(value => println(value))
    }

    // 20秒窗口长度(DS包含窗口长度范围内的数据)
    // 10秒滑动间隔(多次时间处理一次数据)
    val res1: DStream[String] = lines
      .reduceByWindow(_ + " " + _, Seconds(20), Seconds(10))
    res1.print()

    val res2: DStream[String] = lines
      .reduceByWindow(_ + _, Seconds(20), Seconds(10))
    res2.print()

    // 求窗口元素的和
    val res3: DStream[Int] = lines
      .map(_.toInt)
      .reduceByWindow(_ + _, Seconds(20), Seconds(10))
    res3.print()

    // 请窗口元素和
    val res4 = res2.map(_.toInt).reduce(_ + _)
    res4.print()

    // 程序启动
    ssc.start()
    ssc.awaitTermination()

  }
}

运行结果

-------------------------------------------
Time: 1721628860000 ms
-------------------------------------------

rdd = 39; time = 1721628865000 ms
rdd = 40; time = 1721628870000 ms
-------------------------------------------
Time: 1721628870000 ms
-------------------------------------------

-------------------------------------------
Time: 1721628870000 ms
-------------------------------------------

-------------------------------------------
Time: 1721628870000 ms
-------------------------------------------

运行之后控制截图如下:

接下篇:https://developer.aliyun.com/article/1622640

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
3月前
|
分布式计算 监控 大数据
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
95 0
|
3月前
|
SQL 消息中间件 分布式计算
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
大数据-120 - Flink Window 窗口机制-滑动时间窗口、会话窗口-基于时间驱动&基于事件驱动
114 0
|
3月前
|
SQL 分布式计算 大数据
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动&基于事件驱动
127 0
|
3月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
230 0
|
3月前
|
SQL 分布式计算 NoSQL
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
42 1
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
|
2月前
|
分布式计算 流计算 Spark
【赵渝强老师】Spark Streaming中的DStream
本文介绍了Spark Streaming的核心概念DStream,即离散流。DStream通过时间间隔将连续的数据流转换为一系列不连续的RDD,再通过Transformation进行转换,实现流式数据的处理。文中以MyNetworkWordCount程序为例,展示了DStream生成RDD的过程,并附有视频讲解。
|
3月前
|
分布式计算 大数据 Linux
大数据体系知识学习(二):WordCount案例实现及错误总结
这篇文章介绍了如何使用PySpark进行WordCount操作,包括环境配置、代码实现、运行结果和遇到的错误。作者在运行过程中遇到了Py4JJavaError和JAVA_HOME未设置的问题,并通过导入findspark初始化和设置环境变量解决了这些问题。文章还讨论了groupByKey和reduceByKey的区别。
47 1
|
3月前
|
消息中间件 存储 druid
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
57 3
|
3月前
|
存储 大数据 分布式数据库
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
52 1
|
3月前
|
消息中间件 druid 大数据
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
52 2