大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(正在更新!)

章节内容

上节我们完成了如下的内容:


SparkSQL 核心操作

Action操作 详细解释+测试案例

Transformation操作 详细解释+测试案例

58472b92e0a9e413032d0b7d491462c4_e30887716879430ba35a907878bbfe42.png SQL 语句

总体而言:SparkSQL语HQL兼容;与HQL相比,SparkSQL更简洁。

SparkSQL是Apache Spark框架中的一个模块,专门用于处理结构化和半结构化数据。它提供了对数据进行查询、处理和分析的高级接口。


SparkSQL的核心特点包括:


DataFrame API:SparkSQL提供了DataFrame API,它是一种以行和列为结构的数据集,与关系数据库中的表非常相似。DataFrame支持多种数据源,如Hive、Parquet、JSON、JDBC等,可以轻松地将数据导入并进行操作。

SQL查询:SparkSQL允许用户通过标准的SQL语法查询DataFrame,这使得数据分析师和工程师可以使用他们熟悉的SQL语言来处理大数据。SparkSQL会自动将SQL查询转换为底层的RDD操作,从而在分布式环境中执行。

与Hive集成:SparkSQL可以与Hive无缝集成,使用Hive的元数据和查询引擎。它支持HiveQL(Hive Query Language)语法,并且能够直接访问Hive中的数据。

性能优化:SparkSQL采用了多种优化技术,如Catalyst查询优化器和Tungsten物理执行引擎。这些优化技术能够自动生成高效的执行计划,提高查询的执行速度。

数据样例

// 数据
1 1,2,3
2 2,3
3 1,2

// 需要实现如下的效果
1 1
1 2
1 3
2 2
2 3
3 1
3 2

编写代码

package icu.wzk

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{Dataset, SparkSession}
import org.apache.spark.sql.Encoders


case class Info(id: String, tags: String)

object SparkSql01 {

  def main(args: Array[String]): Unit = {
    val sparkSession = SparkSession
      .builder()
      .appName("SparkSQLDemo")
      .master("local[*]")
      .getOrCreate()

    val sc = sparkSession.sparkContext
    sc.setLogLevel("WARN")

    val arr = Array("1 1,2,3", "2 2,3", "3 1,2")
    val rdd: RDD[Info] = sc
      .makeRDD(arr)
      .map{
        line => val fields: Array[String] = line.split("\\s+")
          Info(fields(0), fields(1))
      }

    import sparkSession.implicits._
    implicit val infoEncoder = Encoders.product[Info]

    val ds: Dataset[Info] = sparkSession.createDataset(rdd)
    ds.createOrReplaceTempView("t1")

    sparkSession.sql(
      """
        | select id, tag
        | from t1
        | lateral view explode(split(tags, ",")) t2 as tag
        |""".stripMargin
    ).show
    sparkSession.sql(
      """
        | select id, explode(split(tags, ","))
        | from t1
        |""".stripMargin
    ).show

    sparkSession.close()
  }

}

运行测试

控制台输出结果为:

+---+---+
| id|tag|
+---+---+
|  1|  1|
|  1|  2|
|  1|  3|
|  2|  2|
|  2|  3|
|  3|  1|
|  3|  2|
+---+---+

+---+---+
| id|col|
+---+---+
|  1|  1|
|  1|  2|
|  1|  3|
|  2|  2|
|  2|  3|
|  3|  1|
|  3|  2|
+---+---+

运行结果

运行结果如下图所示:

输入与输出

SparkSQL 内建支持的数据源包括:


Parquet (默认数据源)

JSON

CSV

Avro

Images

BinaryFiles(Spark 3.0)

简单介绍一下,Parquet 是一种列式存储格式,专门为大数据处理和分析而设计。


列式存储:Parquet 采用列式存储格式,这意味着同一列的数据存储在一起。这样可以极大地提高查询性能,尤其是当查询只涉及少量列时。

高效压缩:由于同一列的数据具有相似性,Parquet 能够更高效地进行压缩,节省存储空间。

支持复杂数据类型:Parquet 支持嵌套的数据结构,包括嵌套列表、映射和结构体,这使得它非常适合处理复杂的、半结构化的数据。

跨平台:Parquet 是一种开放标准,支持多种编程语言和数据处理引擎,包括 Apache Spark、Hadoop、Impala 等。

c35a5a5ff302f5a488248f55253e7a76_a3f72d398ed14b438d88be4c526f82ce.png Parquet

特点:Parquet是一种列式存储格式,特别适合大规模数据的存储和处理。它支持压缩和嵌套数据结构,因此在存储效率和读取性能方面表现优异。


使用方式:spark.read.parquet(“path/to/data”) 读取Parquet文件;df.write.parquet(“path/to/output”) 将DataFrame保存为Parquet格式。


JSON

特点:JSON是一种轻量级的数据交换格式,广泛用于Web应用程序和NoSQL数据库中。SparkSQL能够解析和生成JSON格式的数据,并支持嵌套结构。


使用方式:spark.read.json(“path/to/data”) 读取JSON文件;df.write.json(“path/to/output”) 将DataFrame保存为JSON格式。


CSV

特点:CSV(逗号分隔值)是最常见的平面文本格式之一,简单易用,但不支持嵌套结构。SparkSQL支持读取和写入CSV文件,并提供了处理缺失值、指定分隔符等功能。


使用方式:spark.read.csv(“path/to/data”) 读取CSV文件;df.write.csv(“path/to/output”) 将DataFrame保存为CSV格式。


Avro

特点:Avro是一种行式存储格式,适合大规模数据的序列化。它支持丰富的数据结构和模式演化,通常用于Hadoop生态系统中的数据存储和传输。


使用方式:spark.read.format(“avro”).load(“path/to/data”) 读取Avro文件;df.write.format(“avro”).save(“path/to/output”) 将DataFrame保存为Avro格式。


ORC

特点:ORC(Optimized Row Columnar)是一种高效的列式存储格式,专为大数据处理而设计,支持高压缩率和快速读取性能。它在存储空间和I/O性能方面表现优越。


使用方式:spark.read.orc(“path/to/data”) 读取ORC文件;df.write.orc(“path/to/output”) 将DataFrame保存为ORC格式。


Hive Tables

特点:SparkSQL能够无缝集成Hive,直接访问Hive元数据,并对Hive表进行查询。它支持HiveQL语法,并能够利用Hive的存储格式和结构。


使用方式:通过spark.sql(“SELECT * FROM hive_table”)查询Hive表;也可以使用saveAsTable将DataFrame写入Hive表。


JDBC/ODBC

特点:SparkSQL支持通过JDBC/ODBC接口连接关系型数据库,如MySQL、PostgreSQL、Oracle等。它允许从数据库读取数据并将结果写回数据库。


使用方式:spark.read.format(“jdbc”).option(“url”, “jdbc:mysql://host/db”).option(“dbtable”, “table”).option(“user”, “username”).option(“password”, “password”).load() 读取数据库表;df.write.format(“jdbc”).option(“url”, “jdbc:mysql://host/db”).option(“dbtable”, “table”).option(“user”, “username”).option(“password”, “password”).save() 将DataFrame写入数据库。


Text Files

特点:SparkSQL可以处理简单的文本文件,每一行被读取为一个字符串。适合用于处理纯文本数据。


使用方式:spark.read.text(“path/to/data”) 读取文本文件;df.write.text(“path/to/output”) 将DataFrame保存为文本格式。


Delta Lake (外部插件)

特点:Delta Lake是一种开源存储层,构建在Parquet格式之上,支持ACID事务、可扩展元数据处理和流批一体的实时数据处理。尽管不是内建的数据源,但它在Spark生态系统中得到了广泛支持。


使用方式:spark.read.format(“delta”).load(“path/to/delta-table”) 读取Delta表;df.write.format(“delta”).save(“path/to/delta-table”) 将DataFrame保存为Delta格式。


测试案例

val df1 =
spark.read.format("parquet").load("data/users.parquet")
// Use Parquet; you can omit format("parquet") if you wish as
it's the default
val df2 = spark.read.load("data/users.parquet")

// Use CSV
val df3 = spark.read.format("csv")
.option("inferSchema", "true")
.option("header", "true")
.load("data/people1.csv")

// Use JSON
val df4 = spark.read.format("json")
.load("data/emp.json")

此外还支持 JDBC 的方式:

val jdbcDF = sparkSession
  .read
  .format("jdbc")
  .option("url", "jdbc:mysql://h122.wzk.icu/spark_test?useSSL=false")
  .option("driver", "com.mysql.jdbc.Driver")
  .option("user", "hive")
  .option("password", "hive@wzk.icu")
  .load()
jdbcDF.show()

32eb66984e9cf5d1817ce0e3cdc3cd54_db91cef3efa345adaa2ebac0e7ed964c.png

导入依赖

<dependency>
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-hive_2.12</artifactId>
  <version>${spark.version}</version>
</dependency>

hive-site

需要在项目的 Resource 目录下,新增一个 hive-site.xml

备注:最好使用 metastore service连接Hive,使用直接metastore的方式时,SparkSQL程序会修改Hive的版本信息

<configuration>
    <property>
        <name>hive.metastore.uris</name>
        <value>thrift://h122.wzk.icu:9083</value>
    </property>
</configuration>

编写代码

object AccessHive {
  def main(args: Array[String]): Unit = {
    val spark = SparkSession
      .builder()
      .appName("Demo1")
      .master("local[*]")
      .enableHiveSupport()
      // 设为true时,Spark使用与Hive相同的约定来编写Parquet数据
      .config("spark.sql.parquet.writeLegacyFormat", true)
      .getOrCreate()

    val sc = spark.sparkContext
    sc.setLogLevel("warn")

    spark.sql("show databases").show
    spark.sql("select * from ods.ods_trade_product_info").show

    val df: DataFrame = spark.table("ods.ods_trade_product_info")
    df.show()

    df.write.mode(SaveMode.Append).saveAsTable("ods.ods_trade_product_info_back")
    spark.table("ods.ods_trade_product_info_back").show

    spark.close()
  }
}

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
2月前
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
45 0
|
2月前
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
101 0
|
2月前
|
Java 大数据 数据库连接
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
36 2
大数据-163 Apache Kylin 全量增量Cube的构建 手动触发合并 JDBC 操作 Scala
|
2月前
|
分布式计算 大数据 Spark
大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例(二)
大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例(二)
48 1
|
2月前
|
SQL 分布式计算 大数据
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
74 0
|
2月前
|
SQL 分布式计算 算法
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
88 0
|
2月前
|
存储 SQL 分布式计算
大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例(一)
大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例(一)
52 0
|
2月前
|
SQL 分布式计算 大数据
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL
77 0
|
1月前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
139 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
2月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
72 0