大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例(二)

简介: 大数据-95 Spark 集群 SparkSQL Action与Transformation操作 详细解释与测试案例(二)

接上篇:https://developer.aliyun.com/article/1622574?spm=a2c6h.13148508.setting.28.27ab4f0ehhuqRu

select相关

  • 列的多种表示
  • select
  • selectExpr

启动 Spark-Shell 继续进行测试

// 这里注意 option("header", "true") 自动解析一下表头
val df1 = spark.read.option("header", "true").csv("/opt/wzk/data/people1.csv")

// $ col() 等等 不可以混用!!!(有解决方法,但是建议不混用!!!)
// 可以多种形式获取到列
df1.select($"name", $"age", $"job").show

执行结果如下图所示:

继续进行测试

df1.select("name", "age", "job").show(3)
df1.select(col("name"), col("age"), col("job")).show(3)
df1.select($"name", $"age"+1000, $"job").show(5)

运行结果如下图所示:

where相关

接着对上述内容进行测试:

df1.filter("age > 25").show
df1.filter("age > 25 and name == 'wzk18'").show
df1.where("age > 25").show
df1.where("age > 25 and name == 'wzk19'").show


运行测试结果如下图:

groupBy相关

  • groupBy
  • agg
  • max
  • min
  • avg
  • sum
  • count

进行测试:

// 由于我的字段中没有数值类型的,就不做测试了
df1.groupBy("Job").sum("sal").show
df1.groupBy("Job").max("sal").show
df1.groupBy("Job").min("sal").show
df1.groupBy("Job").avg("sal").show
df1.groupBy("Job").count.show
df1.groupBy("Job").avg("sal").where("avg(sal) > 2000").show
df1.groupBy("Job").avg("sal").where($"avg(sal)" > 2000).show
df1.groupBy("Job").agg("sal"->"max", "sal"->"min", "sal"-
>"avg", "sal"->"sum", "sal"->"count").show
df1.groupBy("deptno").agg("sal"->"max", "sal"->"min", "sal"-
>"avg", "sal"->"sum", "sal"->"count").show

orderBy相关

orderBy == sort

df1.orderBy("name").show(5)
df1.orderBy($"name".asc).show(5)
df1.orderBy(-$"age").show(5)

运行测试的结果如下图所示:

继续进行测试:

df1.sort("age").show(3)
df1.sort($"age".asc).show(3)
df1.sort(col("age")).show(3)

测试结果如下图所示:

JOIN相关

// 笛卡尔积
df1.crossJoin(df1).count
// 等值连接(单字段)
df1.join(df1, "name").count
// 等值连接(多字段)
df1.join(df1, Seq("name", "age")).show

运行的测试结果如下图所示:

这里编写两个case:


// 第一个数据集
case class StudentAge(sno: Int, name: String, age: Int)

val lst = List(StudentAge(1,"Alice", 18), StudentAge(2,"Andy", 19), StudentAge(3,"Bob", 17), StudentAge(4,"Justin", 21), StudentAge(5,"Cindy", 20))

val ds1 = spark.createDataset(lst)

// 第二个数据集
case class StudentHeight(sname: String, height: Int)

val rdd = sc.makeRDD(List(StudentHeight("Alice", 160), StudentHeight("Andy", 159), StudentHeight("Bob", 170), StudentHeight("Cindy", 165), StudentHeight("Rose", 160)))

val ds2 = rdd.toDS

运行测试的结果如下图所示:

接下来我们进行连表操作:


// 连表操作 不可以使用 "name"==="sname" !!!
ds1.join(ds2, 'name==='sname).show
ds1.join(ds2, ds1("name")===ds2("sname")).show
ds1.join(ds2, $"name"===$"sname").show
ds1.join(ds2, $"name"===$"sname", "inner").show


测试的运行结果如下图所示:

集合相关

val ds3 = ds1.select("name")
val ds4 = ds2.select("sname")
// union 求并集、不去重
ds3.union(ds4).show
// unionAll(过时了)与union等价
// intersect 求交
ds3.intersect(ds4).show
// except 求差
ds3.except(ds4).show

运行结果如下图所示:

空值处理

math.sqrt(-1.0)
math.sqrt(-1.0).inNaN()
df1.show
// 删除所有列的空值和NaN
df1.na.drop.show
// 删除某列的空值和NaN
df1.na.drop(Array("xxx")).show
// 对列进行填充
df1.na.fill(1000).show
df1.na.fill(1000, Array("xxx")).show


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
6月前
|
人工智能 测试技术 芯片
AMD Ryzen AI Max+ 395四机并联:大语言模型集群推理深度测试
本文介绍了使用四块Framework主板构建AI推理集群的过程,并基于AMD Ryzen AI Max+ 395处理器进行大语言模型推理性能测试,重点评估其并行推理能力及集群表现。
541 0
AMD Ryzen AI Max+ 395四机并联:大语言模型集群推理深度测试
|
8月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
431 0
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
1056 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
11月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
579 79
|
分布式计算 Shell MaxCompute
odps测试表及大量数据构建测试
odps测试表及大量数据构建测试
|
人工智能 供应链 安全
AI辅助安全测试案例某电商-供应链平台平台安全漏洞
【11月更文挑战第13天】该案例介绍了一家电商供应链平台如何利用AI技术进行全面的安全测试,包括网络、应用和数据安全层面,发现了多个潜在漏洞,并采取了有效的修复措施,提升了平台的整体安全性。
749 4
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
614 6
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
621 2
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
523 1
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
427 1