大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据-94 Spark 集群 SQL DataFrame & DataSet & RDD 创建与相互转换 SparkSQL

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(正在更新!)

章节内容

上节完成的内容如下:


SparkSQL介绍

SparkSQL特点

SparkSQL数据抽象

SparkSQL数据类型

SparkSession

在 Spark2.0 之前

  • SQLContext 是创建 DataFrame 和 执行SQL的入口
  • HiveContext 通过HiveSQL语句操作Hive数据,兼Hive操作,HiveContext继承自SQLContext
  • 在 Spark2.0 后

这些入口点统一到了SparkSession,SparkSession封装了SQLContext及HiveContext

实现了SQLContext即HiveContext所有功能

通过SparkSession可以获取到SparkContext

RDD(Resilient Distributed Dataset,弹性分布式数据集)

RDD 是 Spark 的基础抽象,它表示一个不可变的、分布式的数据集。


特点:


不可变性:RDD 是不可变的,一旦创建就不能修改。任何对 RDD 的操作都会生成一个新的 RDD。

弹性:RDD 可以自动从节点失败中恢复数据,通过将计算逻辑重新应用到原始数据来重建丢失的数据。

分布式:RDD 可以分布在多个节点上执行操作,充分利用集群的计算能力。

延迟计算:RDD 的操作是延迟执行的(lazy evaluation),即只有在触发行动操作(如 count()、collect())时,Spark 才会实际执行计算。

类型安全:RDD 是类型化的,但它的 API 是松散类型(loosely typed)的,这意味着编译器不会在编译时检查数据的类型,而是在运行时才会发现类型错误。

DataFrame

DataFrame 是一种基于 RDD 的分布式数据集,它具有命名的列。


特点:


结构化数据:DataFrame 是一个二维表格,具有命名的列和行,类似于关系数据库中的表或 Pandas 的 DataFrame。

优化引擎:DataFrame 受益于 Spark SQL 引擎的优化,如 Catalyst 优化器,可以自动优化查询并生成高效的执行计划。

丰富的 API:DataFrame 提供了一个高层次的 API,支持复杂的查询、过滤、聚合和连接操作。

类型不安全:与 RDD 不同,DataFrame 是动态类型(dynamic typing)的,数据类型检查是在运行时进行的,因此它在编译时不进行类型检查。

DataSet

DataSet 是 Spark 1.6 引入的一个新的数据抽象,它结合了 RDD 的强类型优势和 DataFrame 的优化能力。


特点:


类型安全:DataSet 是强类型的,它利用编译时类型检查,确保在编译时检测类型错误。

优化和性能:DataSet 受益于 Catalyst 优化器和 Tungsten 执行引擎,提供与 DataFrame 相同的优化能力,同时保留了类型安全性。

更丰富的 API:DataSet 提供了 RDD 的大部分 API,如 map、filter 等,同时也支持 SQL 查询。

统一 API:DataSet API 统一了 RDD 和 DataFrame,提供了一种更具表现力和安全性的编程模型。

DataFrame & Dataset 创建

不要刻意区分: DF & DS,DF是一种特殊的DS:ds.transformation => ds


由 Range 生成 Dataset

在 spark-shell 中进行测试

val numDS = spark.range(5, 100, 5)
// orderBy 转换操作 
numDS.orderBy(desc("id")).show(5)
// 统计信息
numDS.describe().show
// 显示 Schema 信息
numDS.printSchema
// 使用RDD执行同样的操作
numDS.rdd.map(_.toInt).stats
// 检查分区数
numDS.rdd.getNumPartitions

运行测试的过程如下图所示:

有集合生成Dataset

Dataset = RDD[case class],在 spark-shell 中进行测试

case class Person(name: String, age: Int, height: Int)

// 注意 Seq 中元素的类型
val seq1 = Seq(Person("Jack", 28, 184), Person("Tom", 10, 144), Person("Andy", 16, 165))

val ds1 = spark.createDataset(seq1)
ds1.printSchema
ds1.show

执行的结果:

再来一个测试:

val seq2 = Seq(("Jack", 28, 184), ("Tom", 10, 144), ("Andy", 16, 165))
val ds2 = spark.createDataset(seq2)
ds2.printSchema
ds2.show

执行的结果:

由集合生成DataFrame

DataFrame = RDD[Row] + Schema

继续进行测试:

val lst = List(("Jack", 28, 184), ("Tom", 10, 144), ("Andy", 16, 165))
val df1 = spark.createDataFrame(lst).withColumnRenamed("_1", "name1").withColumnRenamed("_2", "age1").withColumnRenamed("_3", "height1")
df1.orderBy("age1").show(10)

执行的结果如下图所示:

RDD转成DataFrame

DataFrame = RDD[Row] + Schema

val arr = Array(("Jack", 28, 184), ("Tom", 10, 144), ("Andy", 16, 165))
val rdd1 = sc.makeRDD(arr).map(f => Row(f._1, f._2, f._3))

val schema = StructType(
  StructField("name", StringType, false) ::
  StructField("age", IntegerType, false) ::
  StructField("height", IntegerType, false) ::
  Nil
)

val schema1 = (new StructType).add("name", "string", false).add("age", "int", false).add("height", "int", false)
val rddToDF = spark.createDataFrame(rdd1, schema)
rddToDF.orderBy(desc("name")).show(false)

执行的结果如下图:

RDD转Dataset

Dataset = RDD[case class]

DataFrame = RDD[Row] + Schema

val arr = Array(("Jack", 28, 184), ("Tom", 10, 144), ("Andy", 16, 165))
val rdd1 = sc.makeRDD(arr)
val ds2 = spark.createDataset(rdd1)
ds2.show(10)

执行的结果如下图:

文件创建DataFrame

CSV文件

我们生成了一个CSV文件,大致内容如下:

运行测试

val df1 = spark.read.csv("/opt/wzk/data/people1.csv")
df1.printSchema()
df1.show()

运行结果如下图所示:

三者转换

Spark SQL 提供了一个领域特定语言(DSL)以方便操作结构化数据,核心思想还是SQL,仅仅是一个语法问题。


RDD 与 DataFrame 之间的转换

RDD 转换为 DataFrame

将 RDD 转换为 DataFrame 需要提供数据的模式信息。通常你会使用 toDF() 方法将 RDD 转换为 DataFrame。

这里有两种主要方法:


使用隐式转换:需要导入 spark.implicits._,这允许你在不显式提供模式的情况下将常见的 RDD(如元组)转换为 DataFrame。

使用 StructType 定义模式:如果 RDD 的数据结构比较复杂,或者你需要精确控制 DataFrame 的模式,可以使用 StructType 和 Row。

DataFrame 转换为 RDD:


将 DataFrame 转换为 RDD 非常简单,只需调用 rdd 方法即可

DataFrame 与 DataSet 之间的转换

DataFrame 转换为 DataSet

DataFrame 是无类型的,而 DataSet 是类型化的。为了将 DataFrame 转换为 DataSet,你需要定义一个对应的数据类型(通常是一个 case class)并使用 as[T] 方法

DataSet 转换为 DataFrame

将 DataSet 转换为 DataFrame 非常简单,只需调用 toDF() 方法即可

RDD 与 DataSet 之间的转换

RDD 转换为 DataSet

将 RDD 转换为 DataSet 需要将 RDD 的元素类型与 DataSet 的类型一致。与将 RDD 转换为 DataFrame 类似,通常使用隐式转换或显式提供模式信息

DataSet 转换为 RDD

DataSet 本质上是类型化的 RDD,因此转换为 RDD 非常直接,只需调用 rdd 方法

最终汇总

RDD 转换为 DataFrame:使用 toDF(),或使用 createDataFrame() 提供模式。

DataFrame 转换为 RDD:使用 rdd 方法,转换后元素类型为 Row。

DataFrame 转换为 DataSet:使用 as[T] 方法,需提供对应的 case class。

DataSet 转换为 DataFrame:使用 toDF() 方法。

RDD 转换为 DataSet:使用 toDS(),需提供对应的 case class。

DataSet 转换为 RDD:使用 rdd 方法。


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2月前
|
存储 分布式计算 并行计算
【赵渝强老师】Spark中的RDD
RDD(弹性分布式数据集)是Spark的核心数据模型,支持分布式并行计算。RDD由分区组成,每个分区由Spark Worker节点处理,具备自动容错、位置感知调度和缓存机制等特性。通过创建RDD,可以指定分区数量,并实现计算函数、依赖关系、分区器和优先位置列表等功能。视频讲解和示例代码进一步详细介绍了RDD的组成和特性。
zdl
|
2月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
171 56
|
17天前
|
存储 负载均衡 监控
揭秘 Elasticsearch 集群架构,解锁大数据处理神器
Elasticsearch 是一个强大的分布式搜索和分析引擎,广泛应用于大数据处理、实时搜索和分析。本文深入探讨了 Elasticsearch 集群的架构和特性,包括高可用性和负载均衡,以及主节点、数据节点、协调节点和 Ingest 节点的角色和功能。
37 0
|
2月前
|
SQL 存储 大数据
单机顶集群的大数据技术来了
大数据时代,分布式数仓如MPP成为热门技术,但其高昂的成本让人望而却步。对于多数任务,数据量并未达到PB级,单体数据库即可胜任。然而,由于SQL语法的局限性和计算任务的复杂性,分布式解决方案显得更为必要。esProc SPL作为一种开源轻量级计算引擎,通过高效的算法和存储机制,实现了单机性能超越集群的效果,为低成本、高效能的数据处理提供了新选择。
|
3月前
|
存储 分布式计算 druid
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
54 1
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
|
2月前
|
SQL JSON 分布式计算
【赵渝强老师】Spark SQL的数据模型:DataFrame
本文介绍了在Spark SQL中创建DataFrame的三种方法。首先,通过定义case class来创建表结构,然后将CSV文件读入RDD并关联Schema生成DataFrame。其次,使用StructType定义表结构,同样将CSV文件读入RDD并转换为Row对象后创建DataFrame。最后,直接加载带有格式的数据文件(如JSON),通过读取文件内容直接创建DataFrame。每种方法都包含详细的代码示例和解释。
|
3月前
|
分布式计算 大数据 分布式数据库
大数据-158 Apache Kylin 安装配置详解 集群模式启动(一)
大数据-158 Apache Kylin 安装配置详解 集群模式启动(一)
63 5
|
3月前
|
SQL 分布式计算 NoSQL
大数据-170 Elasticsearch 云服务器三节点集群搭建 测试运行
大数据-170 Elasticsearch 云服务器三节点集群搭建 测试运行
61 4
|
3月前
|
资源调度 大数据 分布式数据库
大数据-158 Apache Kylin 安装配置详解 集群模式启动(二)
大数据-158 Apache Kylin 安装配置详解 集群模式启动(二)
57 2
|
3月前
|
消息中间件 分布式计算 druid
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(二)
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(二)
51 2