大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)

简介: 大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(二)

接上篇:https://developer.aliyun.com/article/1622537?spm=a2c6h.13148508.setting.20.27ab4f0eUI7v7p

分区器作用与分类

在PairRDD(key,value)中,很多操作都是基于Key的,系统会按照Key对数据进行重组,如 GroupByKey

数据重组需要规则,最常见的就是基于Hash的分区,此外还有一种复杂的基于抽样Range分区方法:

HashPartitioner

最简单、最常用,也是默认提供的分区器。

对于给定的Key,计算HashCode,并除以分区的个数取余,如果余数小于0,则用余数+分区的个数,最后返回的值就是这个Key所属的分区ID。

该分区方法可以保证Key相同的数据出现在同一个分区中。

用户可以通过 partitionBy主动使用分区器,通过 partitions参数指定想要分区的数量。

默认情况下的分区情况是:

val rdd1 = sc.makeRDD(1 to 100).map((_, 1))
rdd1.getNumPartitions

执行结果如下图所示:

执行结果如下图所示,分区已经让我们手动控制成10个了:


val rdd2 = rdd1.partitionBy(new org.apache.spark.HashPartitioner(10))
rdd2.getNumPartitions
rdd2.glom.collect.foreach(x => println(x.toBuffer))

RangePartitioner

简单来说就是将一定范围内的数映射到某个分区内,在实现中,分界的算法尤为重要,用到了水塘抽样算法。sortByKey会使用RangePartitioner。

进行代码的测试:

val rdd3 = rdd1.partitionBy(new org.apache.spark.RangePartitioner(10, rdd1))
rdd3.glom.collect.foreach(x => println(x.toBuffer))

执行结果如下图所示:

但是现在的问题是:在执行分区之前其实并不知道数据的分布情况,如果想知道数据的分区就需要对数据进行采样。


Spark中的RangePartitioner在对数据采样的过程中使用了 “水塘采样法”

水塘采样法是:在包含N个项目的集合S中选取K个样本,其中N为1或者很大的未知的数量,尤其适用于不能把所有N个项目都存放到主内存的情况。

在采样过程中执行了 collect() 操作,引发了 Action 操作。

自定义分区器

Spark允许用户通过自定义的Partitioner对象,灵活的来控制RDD的分区方式。

我们需要实现自定义分区器,按照以下的规则进行分区:


分区 0 < 100

100 <= 分区1 < 200

200 <= 分区2 < 300

300 <= 分区3 < 400

900 <= 分区9 < 1000

编写代码

package icu.wzk

import org.apache.spark.rdd.RDD
import org.apache.spark.{Partitioner, SparkConf, SparkContext}

import scala.collection.immutable


class MyPartitioner(n: Int) extends Partitioner {

  override def numPartitions: Int = n

  override def getPartition(key: Any): Int = {
    val k = key.toString.toInt
    k / 100
  }
}

object UserDefinedPartitioner {

  def main(args: Array[String]): Unit = {
    val conf = new SparkConf()
      .setAppName("UserDefinedPartitioner")
      .setMaster("local[*]")
    val sc = new SparkContext(conf)
    sc.setLogLevel("WARN")

    val random = scala.util.Random
    val arr: immutable.IndexedSeq[Int] = (1 to  100)
      .map(idx => random.nextInt(1000))

    val rdd1: RDD[(Int, Int)] = sc.makeRDD(arr).map((_, 1))
    rdd1.glom.collect.foreach(x => println(x.toBuffer))

    println("=========================================")

    val rdd2 = rdd1.partitionBy(new MyPartitioner(10))
    rdd2.glom.collect().foreach(x => println(x.toBuffer))
    
    sc.stop()
    
  }

}

打包上传

这里之前已经重复过多次,就跳过了

mvn clean package

运行测试

spark-submit --master local[*] --class icu.wzk.UserDefinedPartitioner spark-wordcount

可以看到如下的运行结果:

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
8月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
7月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
395 0
|
10月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
514 79
|
9月前
|
负载均衡 算法 关系型数据库
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL集群架构负载均衡故障排除与解决方案
本文深入探讨 MySQL 集群架构负载均衡的常见故障及排除方法。涵盖请求分配不均、节点无法响应、负载均衡器故障等现象,介绍多种负载均衡算法及故障排除步骤,包括检查负载均衡器状态、调整算法、诊断修复节点故障等。还阐述了预防措施与确保系统稳定性的方法,如定期监控维护、备份恢复策略、团队协作与知识管理等。为确保 MySQL 数据库系统高可用性提供全面指导。
zdl
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
588 56
|
SQL 存储 大数据
单机顶集群的大数据技术来了
大数据时代,分布式数仓如MPP成为热门技术,但其高昂的成本让人望而却步。对于多数任务,数据量并未达到PB级,单体数据库即可胜任。然而,由于SQL语法的局限性和计算任务的复杂性,分布式解决方案显得更为必要。esProc SPL作为一种开源轻量级计算引擎,通过高效的算法和存储机制,实现了单机性能超越集群的效果,为低成本、高效能的数据处理提供了新选择。
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
592 2
|
存储 负载均衡 监控
揭秘 Elasticsearch 集群架构,解锁大数据处理神器
Elasticsearch 是一个强大的分布式搜索和分析引擎,广泛应用于大数据处理、实时搜索和分析。本文深入探讨了 Elasticsearch 集群的架构和特性,包括高可用性和负载均衡,以及主节点、数据节点、协调节点和 Ingest 节点的角色和功能。
591 0
|
4月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
333 14
|
5月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
197 0