解锁AI新纪元:LangChain保姆级RAG实战,助你抢占大模型发展趋势红利,共赴智能未来之旅!

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: 【10月更文挑战第4天】本文详细介绍检索增强生成(RAG)技术的发展趋势及其在大型语言模型(LLM)中的应用优势,如知识丰富性、上下文理解和可解释性。通过LangChain框架进行实战演练,演示从知识库加载、文档分割、向量化到构建检索器的全过程,并提供示例代码。掌握RAG技术有助于企业在问答系统、文本生成等领域把握大模型的红利期,应对检索效率和模型融合等挑战。

基于LangChain 进行保姆级RAG实战演练:大模型发展趋势和红利期把握

随着人工智能技术的不断进步,大型语言模型(LLM)在各个领域的应用日益广泛。而检索增强生成(RAG)技术,作为提升LLM性能的重要手段,正逐渐受到业界的广泛关注。本文将通过对比和对比的形式,详细探讨RAG技术的发展趋势,并结合LangChain框架进行保姆级实战演练,帮助读者把握大模型的红利期。

首先,我们来看RAG技术的发展趋势。与传统LLM相比,RAG技术通过引入检索机制,能够更有效地利用外部知识库,提升模型的生成质量和准确性。这一特点使得RAG在问答系统、文本生成、对话系统等应用场景中具有显著优势。

一、RAG技术的优势与挑战

优势:
知识丰富性:RAG能够整合多源信息,生成更丰富、更准确的回答。
上下文理解:通过检索机制,RAG能够更好地理解上下文,生成更连贯的文本。
可解释性:RAG的生成过程相对透明,有助于提升用户对模型输出的信任度。
挑战:
检索效率:如何快速、准确地从海量数据中检索到相关信息,是RAG面临的一大挑战。
模型融合:如何将RAG与微调(fine-tuning)等其他技术有效结合,提升模型性能,也是当前研究的热点。
二、LangChain框架下的RAG实战演练

接下来,我们将通过LangChain框架进行RAG技术的实战演练。LangChain是一个开源的AI开发框架,它提供了丰富的工具和组件,帮助开发者构建高效、可扩展的AI应用。

示例代码:

python

安装必要的库

!pip install langchain transformers

加载数据

from langchain.document_loaders import TextLoader
loader = TextLoader("data/knowledge_base.txt")
docs = loader.load()

分割文档

from langchain.text_splitter import CharacterTextSplitter
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=500)
chunks = text_splitter.split_documents(docs)

向量化文档

from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()

构建向量数据库

from langchain.vectorstores import FAISS
db = FAISS.from_documents(chunks, embeddings)

创建检索器

retriever = db.as_retriever()

定义RAG链

from langchain.chains import RetrievalQA
from langchain.prompts import ChatPromptTemplate

template = "请根据以下信息回答关于{question}的问题:{context}"
prompt = ChatPromptTemplate.from_template(template)

rag_chain = RetrievalQA.from_llm(llm="openai-davinci-003", retriever=retriever, prompt=prompt)

示例查询

query = "请解释什么是深度学习?"
answer = rag_chain.run(query)
print(answer)
在上述代码中,我们首先加载了一个知识库文件,并将其分割成较小的文本块以便进行向量化。然后,我们使用OpenAI的嵌入模型将文本块向量化,并构建了一个FAISS向量数据库。接着,我们创建了一个检索器,并将其与RAG链结合使用。最后,我们通过一个示例查询来验证RAG链的性能。

三、大模型的红利期把握

随着RAG技术的不断发展,大型语言模型的应用场景将越来越广泛。从问答系统到对话系统,从文本生成到内容推荐,RAG技术都有望发挥重要作用。因此,对于希望把握大模型红利期的企业和个人来说,掌握RAG技术无疑是一个明智的选择。

然而,值得注意的是,RAG技术的发展仍面临诸多挑战。如何提升检索效率、如何优化模型融合策略、如何确保生成内容的准确性和可解释性等,都是当前研究的重点。因此,在把握红利期的同时,我们也应持续关注RAG技术的最新进展,以便及时调整和优化我们的应用策略。

综上所述,基于LangChain的RAG实战演练不仅能够帮助我们深入了解RAG技术的原理和实现方法,还能够为我们把握大模型的红利期提供有力支持。希望本文能够为读者提供有益的参考和启示。

相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
打赏
0
14
14
4
322
分享
相关文章
【保姆级图文详解】大模型、Spring AI编程调用大模型
【保姆级图文详解】大模型、Spring AI编程调用大模型
937 12
【保姆级图文详解】大模型、Spring AI编程调用大模型
数据中台架构解析:湖仓一体的实战设计
在数据量激增的数字化时代,企业面临数据分散、使用效率低等问题。数据中台作为统一管理与应用数据的核心平台,结合湖仓一体架构,打通数据壁垒,实现高效流转与分析。本文详解湖仓一体的设计与落地实践,助力企业构建统一、灵活的数据底座,驱动业务决策与创新。
AI邂逅青年科学家,大模型化身科研“搭子”
2025年6月30日,首届魔搭开发者大会在北京举办,涵盖前沿模型、MCP、Agent等七大论坛。科研智能主题论坛汇聚多领域科学家,探讨AI与科研融合的未来方向。会上展示了AI在药物发现、生物计算、气候变化、历史文献处理等多个领域的创新应用,标志着AI for Science从工具辅助向智能体驱动的范式跃迁。阿里云通过“高校用云”计划推动科研智能化,助力全球科研创新。
用Spring AI搭建本地RAG系统:让AI成为你的私人文档助手
想让AI帮你读懂PDF文档吗?本文教你用Spring AI和Ollama搭建一个本地RAG系统,让AI成为你的私人文档助手。无需GPU,无需云端API,只需几行代码,你的文档就能开口说话了!
129 2
AR眼镜与AI视觉大模型,开启AR工业巡检与维护全新体验
AR眼镜与AI视觉大模型深度融合,革新工业设备巡检方式。实时采集数据、智能分析预警,提升巡检效率与准确性,保障工业生产安全高效运行。
AR眼镜与AI视觉大模型,开启AR工业巡检与维护全新体验
Springboot集成AI Springboot3 集成阿里云百炼大模型CosyVoice2 实现Ai克隆语音(未持久化存储)
本项目基于Spring Boot 3.5.3与Java 17,集成阿里云百炼大模型CosyVoice2实现音色克隆与语音合成。内容涵盖项目搭建、音色创建、音频合成、音色管理等功能,适用于希望快速掌握Spring Boot集成语音AI技术的开发者。需提前注册阿里云并获取API Key。
云上玩转Qwen3系列之四:构建AI Search RAG全栈应用
本文介绍如何利用人工智能平台 PAI-LangStudio、Qwen3 大模型与 AI 搜索开放平台结合 Elasticsearch,构建高效、精准的 AI Search RAG 智能检索应用。通过混合检索技术及 Agentic Workflow 编排,实现自然语言驱动的精准查询,并支持灵活扩展与二次开发,满足多样化场景需求。
再不玩通义 VACE 模型你就过时了!一个模型搞定所有视频任务
介绍通义的开源模型在 ecs 或 acs 场景如何一键部署和使用,如何解决不同视频生成场景的问题。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等