大数据-52 Kafka 基础概念和基本架构 核心API介绍 应用场景等

简介: 大数据-52 Kafka 基础概念和基本架构 核心API介绍 应用场景等

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka (正在更新…)

章节内容

上节我们完成了如下的内容:


Redis高可用 CAP-AP

Redis主从模式

Redis一主一从 一主多从

Redis哨兵模式

Redis哨兵模式 docker-compose测试

终于!我们更新完了Redis!现在我们开始更新Kafka。


Kafka介绍

Kafka最初是由Linkedin公司开发,是一个分布式、分区的、多副本、多生产者、多消费者、基于ZK的。

常见用于 Nginx 日志、消息服务。在2010年贡献给了Apache基金会成为顶级开源项目。


Kafka主要设计目标如下:


以时间复杂度为O(1)的方式提供消息持久化的能力,即使TB级数据也能保证常数访问。

高吞吐率,即使在非常廉价的机器上也可以有每秒100K条消息的传输

支持KafkaServer间的消息分区,及分布式消费,同时保证每个Partition内的消息顺序传输。

同时支持离线数据处理和实时数据处理

支持在线水平扩展

生产消费图

消息模式

主流的消息传递有两种方式:点对点和发布订阅,Kafka属于 发布-订阅 模式的一种

对于消息中间件,消息会分为:拉、推。Kafka消息只有拉取,没有推送。(可以用轮询实现推送)


Kafka在一个或多个可以跨域多个数据中心的服务器上作为集群运行

Kafka集群按照主题分类管理,一个主题可以多个分区,一个分区可以有多个副本分区

每个记录由一个键,一个值和一个时间戳组成。

核心API

ProducerAPI:允许应用程序记录流发布到一个或者多个Kafka主题

ConsumerAPI:允许应用程序订阅一个或多个主题并处理并生成记录流

StreamAPI:允许应用程序充当流处理器,使用一个或多个主题的输入流,并生成一个或者多个输出流。从而有效的将输入流转换为输出流。

ConnectorAPI:允许构建和运行将Kafka主题连接到现有应用程序或数据系统的可重用生产者或使用者

Kafka优势

高吞吐:单机每秒处理几十百万的消息量,即使存储了TB消息,也能够稳定运行

高性能:单节点支持上千个客户端,并保证零停机和零数据丢失。

持久化数据存储:将消息持久化,通过数据持久化到磁盘以及replication防止数据丢失。

分布式系统,易于向外扩展。所有Producer和Consumer等都可以有多个,分布式的,无需停机扩展。

Kafka是分布式、分区、复制、容错的

客户端状态维护:消息被处理的状态在Consumer端维护,而不是由Server维护,失败能够自动平衡

支持online和offline场景

支持多种语言

应用场景

日志收集:可以用Kakfa进行日志的收集

消息系统:解耦生产者和消费者

用户活动跟踪:用户行为被记录到Kafka中,消费者取到之后对用户的数据进行分析处理

运营指标:记录运营监控数据、报警和报告

流式处理:比如SparkStream、Storm

基本架构

消息和批次

Kafka的数据单元称为消息,可以把消息看成是数据库里的一个数据行或者一条记录。消息由字节组组成。

消息由键,键也是一个字节数组,当消息以一种可控的方式写入不同的分区时,会用到键。

为了提高效率,消息被分批写入Kafka,批次就是一组消息,这些消息属于同一个主题和分区。

把消息分批次可以减少网络开销,批次越大,单位时间内处理的消息就越多,单个消息传输的时间久越长。

消息模式

消息模式(schema)有很多可用的选项。如 JSON、XML,他们缺乏强类型的处理能力。

Kafka的开发者喜欢使用ApacheAvro,提供了一种紧凑序列格式化,模式和消息体分开。当模式发生变化时,不需要重新生成代码,它还支持强类型和模式进化。

数据格式一致性对Kafka很重要,因为它消除了消息读写操作之间的耦合性。

主题和分区

Kafka的消息通过主题进行分类,主题可比数据库表或者文件系统里的文件夹。主题可以被分为若干区域,一个主题通过分区分布于Kafka集群中,提供了横向扩展的能力。


生产和消费者

生产者创建消息,消费者消费消息。

生产者在默认的情况下会把消息均衡的发布到主题的所有分区上:


直接指定消息的分区

根据消息的key散列取模得出分区

轮询指定分区

消费者通过偏移量来区分已经读过的消息,从而消费消息。

消费者是消费组的一部分,消费组保证每个分区只有一个消费者使用,避免重复消费。

Broker 和 集群

一个独立的Kafka服务器成为Broker,Broker接受来自生产者的消息,为消息设置偏移量,并提交到磁盘进行保存。

Broker为消费者提供服务,对读取分区的请求做出响应,返回已提交到磁盘上的消息。

单个Broker可以轻松处理数千个分区以及每秒百万的消息量。

每一个集群都有一个Broker是集群控制器(自动从集群的活跃成员中选举出来)

控制器负责管理工作:


将分区分配给Broker

监控Broker

集群中一个分区属于一个Broker,该Broker称为分区首领。


一个分区可以分配给多个Broker,此时会发生分区复制。

分区的复制提高了消息冗余、高可用。

副本分区不负责处理消息的读写。



目录
相关文章
|
5月前
|
消息中间件 Java Kafka
Java 事件驱动架构设计实战与 Kafka 生态系统组件实操全流程指南
本指南详解Java事件驱动架构与Kafka生态实操,涵盖环境搭建、事件模型定义、生产者与消费者实现、事件测试及高级特性,助你快速构建高可扩展分布式系统。
303 7
|
6月前
|
存储 SQL 监控
数据中台架构解析:湖仓一体的实战设计
在数据量激增的数字化时代,企业面临数据分散、使用效率低等问题。数据中台作为统一管理与应用数据的核心平台,结合湖仓一体架构,打通数据壁垒,实现高效流转与分析。本文详解湖仓一体的设计与落地实践,助力企业构建统一、灵活的数据底座,驱动业务决策与创新。
|
8月前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
7月前
|
存储 SQL 分布式计算
19章构建企业级大数据平台:从架构设计到数据治理的完整链路
开源社区: 贡献者路径:从提交Issue到成为Committer 会议演讲:通过DataWorks Summit提升影响力 标准制定: 白皮书撰写:通过DAMA数据治理框架认证 专利布局:通过架构设计专利构建技术壁垒
|
7月前
|
安全 测试技术 API
电商API接口开发:基础架构搭建全攻略
本文详细解析了电商API接口从零搭建基础架构的全流程。首先通过需求分析明确业务功能与接口规范,选定数据格式(如JSON)及通信方式(如RESTful)。接着在架构设计阶段选择合适的技术栈、数据库方案,并引入API网关实现统一管理。开发实现部分涵盖认证授权、数据访问、日志记录与异常处理等核心功能。安全防护则强调数据加密、传输安全及速率限制策略。测试优化阶段包括单元测试、集成测试、性能与安全测试,确保接口稳定性。最后通过工具生成清晰的API文档并实施版本控制,为开发者提供便利。整体流程系统化、模块化,助力打造高效、安全的电商API接口。
|
7月前
|
缓存 负载均衡 监控
微服务架构下的电商API接口设计:策略、方法与实战案例
本文探讨了微服务架构下的电商API接口设计,旨在打造高效、灵活与可扩展的电商系统。通过服务拆分(如商品、订单、支付等模块)和标准化设计(RESTful或GraphQL风格),确保接口一致性与易用性。同时,采用缓存策略、负载均衡及限流技术优化性能,并借助Prometheus等工具实现监控与日志管理。微服务架构的优势在于支持敏捷开发、高并发处理和独立部署,满足电商业务快速迭代需求。未来,电商API设计将向智能化与安全化方向发展。
490 102
|
3月前
|
存储 监控 安全
132_API部署:FastAPI与现代安全架构深度解析与LLM服务化最佳实践
在大语言模型(LLM)部署的最后一公里,API接口的设计与安全性直接决定了模型服务的可用性、稳定性与用户信任度。随着2025年LLM应用的爆炸式增长,如何构建高性能、高安全性的REST API成为开发者面临的核心挑战。FastAPI作为Python生态中最受青睐的Web框架之一,凭借其卓越的性能、强大的类型安全支持和完善的文档生成能力,已成为LLM服务化部署的首选方案。
|
4月前
|
存储 分布式计算 资源调度
【赵渝强老师】阿里云大数据MaxCompute的体系架构
阿里云MaxCompute是快速、全托管的EB级数据仓库解决方案,适用于离线计算场景。它由计算与存储层、逻辑层、接入层和客户端四部分组成,支持多种计算任务的统一调度与管理。
416 1
|
6月前
|
消息中间件 分布式计算 大数据
“一上来就搞大数据架构?等等,你真想清楚了吗?”
“一上来就搞大数据架构?等等,你真想清楚了吗?”
127 1
|
5月前
|
SQL 存储 监控
流处理 or 批处理?大数据架构还需要流批一体吗?
简介:流处理与批处理曾是实时监控与深度分析的两大支柱,但二者在数据、代码与资源上的割裂,导致维护成本高、效率低。随着业务对数据实时性与深度分析的双重需求提升,传统架构难以为继,流批一体应运而生。它旨在通过逻辑、存储与资源的统一,实现一套系统、一套代码同时支持实时与离线处理,提升效率与一致性,成为未来大数据架构的发展方向。