Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: Hadoop-32 ZooKeeper 分布式锁问题 分布式锁Java实现 附带案例和实现思路代码

章节内容

上节我们完成了:


ZooKeeper的Leader选举机制

ZooKeeper的选举过程

ZooKeeper的ZAB协议

背景介绍

这里是三台公网云服务器,每台 2C4G,搭建一个Hadoop的学习环境,供我学习。

之前已经在 VM 虚拟机上搭建过一次,但是没留下笔记,这次趁着前几天薅羊毛的3台机器,赶紧尝试在公网上搭建体验一下。


2C4G 编号 h121

2C4G 编号 h122

2C2G 编号 h123

分布式锁

出现问题1(单机器)

假设 Redis 里面的某个商品库存为1,此时两个用户同时下单,其中一个下单请求执行到第3步,更新数据库的库存为0,但是第4步还没执行。

而另外一个用户下单执行到了第二步,发现库存还是1,就会继续执行第3步。

但是此时库存已经为0了,所以数据库没有限制,此时会出现超卖的问题。

解决方案1

  • 用锁把2、3、4步锁住,让他们执行完后,另一个线程才能够继续执行。
  • 但是由于业务发展迅速,原来的单机已经不能够满足,此时增加一台机器后,会出现更严重的问题。

出现问题2(多机器)

假设有两个订单同时执行,分别有两个机器执行,那么这两个请求就是可以同时执行了,这样就依然出现了超卖的问题。

解决方案2

我们需要使用分布式锁来解决上面出现的问题。

分布式锁的作用就是在整个系统中提供一个全局的、唯一的锁,在分布式系统中每个系统进行相关的操作时都需要获取到该锁,才能够执行相应的操作。


ZK 分布式锁

实现思路

锁就是ZK指定目录下序号最小的临时节点,多个系统的多个线程都要在此目录下创建临时顺序节点,因为ZK会保证节点的顺序性,所以可以利用节点的顺序性进行锁判断。

每个线程都是先创建临时顺序节点,然后获取当前目录下最小的节点(序号),判断最小节点是不是当前节点,如果是那么获取锁成功,如果不是则获取锁失败。

获取锁失败的线程获取当前节点上一个临时顺序节点,并对此节点进行监听,当该节点删除时,代表释放了锁。

流程图

编写代码

LockTest

package icu.wzk.zk.demo02;

public class LockTest {

    public static void main(String[] args) {
        for (int i = 0; i < 10; i ++) {
            // 启动10个
            new Thread(new LockRunnable()).start();
        }
    }

    static class LockRunnable implements Runnable {

        @Override
        public void run() {
            final ClientTest clientTest = new ClientTest();
            clientTest.getLock();
            try {
                Thread.sleep(2000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            clientTest.deleteLock();
        }
    }

}

ClientTest

package icu.wzk.zk.demo02;

import org.I0Itec.zkclient.IZkDataListener;
import org.I0Itec.zkclient.ZkClient;

import java.util.Collections;
import java.util.List;
import java.util.concurrent.CountDownLatch;

public class ClientTest {

    private ZkClient zkClient = new ZkClient("h121.wzk.icu:2181,h122.wzk.icu:2181,h123.wzk.icu:2181");

    String beforeNodePath;

    String currentNodePath;

    CountDownLatch countDownLatch = null;

    public ClientTest() {
        synchronized (ClientTest.class) {
            if (!zkClient.exists("/lock")) {
                zkClient.createPersistent("/lock");
            }
        }
    }

    public boolean tryGetLock() {
        if (null == currentNodePath || currentNodePath.isEmpty()) {
            currentNodePath = zkClient.createEphemeralSequential("/lock/", "lock");
        }
        final List<String> childs = zkClient.getChildren("/lock");
        Collections.sort(childs);
        final String minNode = childs.get(0);
        if (currentNodePath.equals("/lock/" + minNode)) {
            return true;
        } else {
            final int i = Collections.binarySearch(childs, currentNodePath.substring("/lock/".length()));
            String lastNodeChild = childs.get(i - 1);
            beforeNodePath = "/lock/" + lastNodeChild;
        }
        return false;
    }

    public void waitForLock() {
        final IZkDataListener iZkDataListener = new IZkDataListener() {
            @Override
            public void handleDataChange(String dataPath, Object data) throws Exception {
                //
            }

            @Override
            public void handleDataDeleted(String dataPath) throws Exception {
                countDownLatch.countDown();
            }
        };
        zkClient.subscribeDataChanges(beforeNodePath, iZkDataListener);

        if (zkClient.exists(beforeNodePath)) {
            countDownLatch = new CountDownLatch(1);
            try {
                countDownLatch.await();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        zkClient.unsubscribeDataChanges(beforeNodePath, iZkDataListener);
    }

    public void deleteLock() {
        if (zkClient != null) {
            zkClient.delete(currentNodePath);
            zkClient.close();
        }
    }

    public void getLock() {
        final String threadName = Thread.currentThread().getName();
        if (tryGetLock()) {
            System.out.println(threadName + ": 获取到了锁!");
        } else {
            System.out.println(threadName + ": 没有获取到锁!");
            waitForLock();
            // 自己调用自己
            getLock();
        }
    }


}

运行结果

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
相关文章
|
6天前
|
存储 分布式计算 Hadoop
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
31 7
|
12天前
|
存储 监控 Java
JAVA线程池有哪些队列? 以及它们的适用场景案例
不同的线程池队列有着各自的特点和适用场景,在实际使用线程池时,需要根据具体的业务需求、系统资源状况以及对任务执行顺序、响应时间等方面的要求,合理选择相应的队列来构建线程池,以实现高效的任务处理。
91 12
|
2月前
|
jenkins Java 测试技术
如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例详细说明
本文介绍了如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例,详细说明了从 Jenkins 安装配置到自动构建、测试和部署的全流程。文中还提供了一个 Jenkinsfile 示例,并分享了实践经验,强调了版本控制、自动化测试等关键点的重要性。
97 3
|
2月前
|
存储 Java 关系型数据库
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
78 2
|
2月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
2月前
|
Java 关系型数据库 数据库
面向对象设计原则在Java中的实现与案例分析
【10月更文挑战第25天】本文通过Java语言的具体实现和案例分析,详细介绍了面向对象设计的五大核心原则:单一职责原则、开闭原则、里氏替换原则、接口隔离原则和依赖倒置原则。这些原则帮助开发者构建更加灵活、可维护和可扩展的系统,不仅适用于Java,也适用于其他面向对象编程语言。
50 2
|
3月前
|
安全 Java
Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧
【10月更文挑战第20天】Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧,包括避免在循环外调用wait()、优先使用notifyAll()、确保线程安全及处理InterruptedException等,帮助读者更好地掌握这些方法的应用。
34 1
|
3月前
|
jenkins Java 测试技术
如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例详细说明
【10月更文挑战第8天】本文介绍了如何使用 Jenkins 自动发布 Java 代码,通过一个电商公司后端服务的实际案例,详细说明了从 Jenkins 安装配置到自动构建、测试和部署的全流程。文中还提供了一个 Jenkinsfile 示例,并分享了实践经验,强调了版本控制、自动化测试等关键点的重要性。
54 5
|
2月前
|
分布式计算 资源调度 Hadoop
【赵渝强老师】基于ZooKeeper实现Hadoop HA
本文介绍了如何在4个节点(bigdata112、bigdata113、bigdata114和bigdata115)上部署HDFS高可用(HA)架构,并同时部署Yarn的HA。详细步骤包括环境变量设置、配置文件修改、ZooKeeper集群启动、JournalNode启动、HDFS格式化、ZooKeeper格式化以及启动Hadoop集群等。最后通过jps命令检查各节点上的后台进程,确保部署成功。
120 0
|
3月前
|
SQL NoSQL 安全
分布式环境的分布式锁 - Redlock方案
【10月更文挑战第2天】Redlock方案是一种分布式锁实现,通过在多个独立的Redis实例上加锁来提高容错性和可靠性。客户端需从大多数节点成功加锁且总耗时小于锁的过期时间,才能视为加锁成功。然而,该方案受到分布式专家Martin的质疑,指出其在特定异常情况下(如网络延迟、进程暂停、时钟偏移)可能导致锁失效,影响系统的正确性。Martin建议采用fencing token方案,以确保分布式锁的正确性和安全性。
64 0

热门文章

最新文章