Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce

本文涉及的产品
RDS AI 助手,专业版
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce

章节内容

上节我们完成了如下的内容:


Sqoop 部分导入数据 --query

Sqoop 部分导入数据 --where

记录执行过程和执行结果

背景介绍

这里是三台公网云服务器,每台 2C4G,搭建一个Hadoop的学习环境,供我学习。

之前已经在 VM 虚拟机上搭建过一次,但是没留下笔记,这次趁着前几天薅羊毛的3台机器,赶紧尝试在公网上搭建体验一下。


2C4G 编号 h121

2C4G 编号 h122

2C2G 编号 h123

注意事项

Apache Sqoop 于 2021 年 6 月迁入 Attic。

Apache Sqoop 的使命是创建和维护与 Apache Hadoop 和结构化数据存储相关的大规模数据传输软件。

虽然项目已经可能过时,但是如果你的时间充裕的话,可以适当地学习一下,可能会对你有一定的帮助的!!!


MySQL -> Hive

执行脚本

CREATE DATABASE mydb;
CREATE TABLE mydb.goodtbl(
  gname string,
  serialNumber int,
  price int,
  stock_number int,
  create_time date
);

执行结果如下:

导入数据

注意,这里是在 Shell 中执行,不是在 Hive 中执行!!!

sqoop import \
--connect jdbc:mysql://h122.wzk.icu:3306/sqoop \
--username hive \
--password hive@wzk.icu \
--table goodtbl \
--hive-import \
--create-hive-table \
--fields-terminated-by "\t" \
--hive-overwrite \
--hive-table mydb.goodtbl \
-m 1

上述参数的解释:


hive-import 必须参数,指定导入hive

hive-database hive库名

hive-table hive表名

fields-terminated-by hive字段分隔符

hive-overwrite 覆盖已经存在的数据

create-hive-table 创建好hive表

分配任务

YARN 集群开始工作了

等待执行

Map->Reduce

Hive -> MySQL

执行脚本

我们需要在 MySQL 中先建立好我们的表格。

CREATE TABLE sqoop.goodtbl2(
  gname varchar(50),
  serialNumber int,
  price int,
  stock_number int,
  create_time date
);

执行结果如下:

导出数据

在Shell中运行如下脚本

sqoop export \
--connect jdbc:mysql://h122.wzk.icu:3306/sqoop \
--username hive \
--password hive@wzk.icu \
--table goodtbl2 \
--num-mappers 1 \
--export-dir /user/hive/warehouse/mydb.db/goodtbl \
--input-fields-terminated-by "\t"

等待执行

任务分配至YARN 等待调度

查看结果

MapReduce结束,执行完毕后,我们可以在数据库中查看到我们导出的结果。

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
10月前
|
SQL 分布式计算 资源调度
Dataphin功能Tips系列(48)-如何根据Hive SQL/Spark SQL的任务优先级指定YARN资源队列
如何根据Hive SQL/Spark SQL的任务优先级指定YARN资源队列
411 4
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
299 0
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
222 0
|
Java 关系型数据库 数据库连接
实时计算 Flink版操作报错之在使用JDBC连接MySQL数据库时遇到报错,识别不到jdbc了,怎么解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
Java 关系型数据库 MySQL
JDBC实现往MySQL插入百万级数据
JDBC实现往MySQL插入百万级数据
214 0
|
Java 关系型数据库 MySQL
mysql5.7 jdbc驱动
遵循上述步骤,即可在Java项目中高效地集成MySQL 5.7 JDBC驱动,实现数据库的访问与管理。
2766 1
|
SQL druid Java
Java数据库部分(MySQL+JDBC)(二、JDBC超详细学习笔记)(下)
Java数据库部分(MySQL+JDBC)(二、JDBC超详细学习笔记)
213 3
Java数据库部分(MySQL+JDBC)(二、JDBC超详细学习笔记)(下)
|
SQL Java 关系型数据库
Java数据库部分(MySQL+JDBC)(二、JDBC超详细学习笔记)(上)
Java数据库部分(MySQL+JDBC)(二、JDBC超详细学习笔记)
627 3
Java数据库部分(MySQL+JDBC)(二、JDBC超详细学习笔记)(上)
|
SQL 关系型数据库 MySQL
Java数据库部分(MySQL+JDBC)(一、MySQL超详细学习笔记)(下)
Java数据库部分(MySQL+JDBC)(一、MySQL超详细学习笔记)
142 6
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
264 0