Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介: Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce

章节内容

上一节我们完成了如下的内容:


编写一个 SQL 脚本生成数据

启动我们的依赖服务:HDFS、Hive、YARN

Sqoop 将数据 全量 导入 Hive

查看MapReduce状态、查看HDFS结果

背景介绍

这里是三台公网云服务器,每台 2C4G,搭建一个Hadoop的学习环境,供我学习。

之前已经在 VM 虚拟机上搭建过一次,但是没留下笔记,这次趁着前几天薅羊毛的3台机器,赶紧尝试在公网上搭建体验一下。


2C4G 编号 h121

2C4G 编号 h122

2C2G 编号 h123

注意事项

Apache Sqoop 于 2021 年 6 月迁入 Attic。

Apache Sqoop 的使命是创建和维护与 Apache Hadoop 和结构化数据存储相关的大规模数据传输软件。

虽然项目已经可能过时,但是如果你的时间充裕的话,可以适当地学习一下,可能会对你有一定的帮助的!!!


部分导入: --query

执行脚本

sqoop import \
--connect jdbc:mysql://h122.wzk.icu:3306/sqoop \
--username hive \
--password hive@wzk.icu \
--target-dir /root \
--append \
-m 1 \
--fields-terminated-by "\t" \
--query 'select gname, serialNumber, price, stock_number,
create_time from goodtbl where price>88 and $CONDITIONS;'

上述参数的解释:

  • 查询语句的where中必须包含 ‘$CONDITIONS’
  • 如果query后使用双引号 则 $CONDITIONS 前必须加转移符号,防止shell认为是自己的变量

分配任务

可以观察到 Sqoop 开始了 MapReduce 的任务

等待执行

此时任务已经开始分配了 Map -> Reduce

查看结果

可以看到任务执行完毕

部分导入: 指定列

执行脚本

sqoop import \
--connect jdbc:mysql://h122.wzk.icu:3306/sqoop \
--username hive \
--password hive@wzk.icu \
--target-dir /root \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--columns gname,serialNumber,price \
--table goodtbl

上述参数的解释:

  • columns中如果涉及到多个列,用逗号分隔,不能添加空格!!!

分配任务

与上述的内容一致,就不放重复的内容了,只截取部分。

部分导入: --where

执行脚本

sqoop import \
--connect jdbc:mysql://h122.wzk.icu:3306/sqoop \
--username hive \
--password hive@wzk.icu \
--target-dir /root \
--delete-target-dir \
-m 1 \
--fields-terminated-by "\t" \
--table goodtbl \
--where "price>=68"

分配任务

与上述一致,内容结果等基本重复,也不放了。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
打赏
0
0
0
0
103
分享
相关文章
MySQL进阶突击系列(07) 她气鼓鼓递来一条SQL | 怎么看执行计划、SQL怎么优化?
在日常研发工作当中,系统性能优化,从大的方面来看主要涉及基础平台优化、业务系统性能优化、数据库优化。面对数据库优化,除了DBA在集群性能、服务器调优需要投入精力,我们研发需要负责业务SQL执行优化。当业务数据量达到一定规模后,SQL执行效率可能就会出现瓶颈,影响系统业务响应。掌握如何判断SQL执行慢、以及如何分析SQL执行计划、优化SQL的技能,在工作中解决SQL性能问题显得非常关键。
MySQL原理简介—1.SQL的执行流程
本文介绍了MySQL驱动、数据库连接池及SQL执行流程的关键组件和作用。主要内容包括:MySQL驱动用于建立Java系统与数据库的网络连接;数据库连接池提高多线程并发访问效率;MySQL中的连接池维护多个数据库连接并进行权限验证;网络连接由线程处理,监听请求并读取数据;SQL接口负责执行SQL语句;查询解析器将SQL语句解析为可执行逻辑;查询优化器选择最优查询路径;存储引擎接口负责实际的数据操作;执行器根据优化后的执行计划调用存储引擎接口完成SQL语句的执行。整个流程确保了高效、安全地处理SQL请求。
235 76
【YashanDB知识库】如何将mysql含有group by的SQL转换成崖山支持的SQL
本文探讨了在YashanDB(崖山数据库)中执行某些SQL语句时出现的报错问题,对比了MySQL的成功执行结果。问题源于SQL-92标准对非聚合列的严格限制,要求这些列必须出现在GROUP BY子句中,而SQL:1999及更高版本允许非聚合列直接出现在选择列中。YashanDB和Oracle遵循SQL-92标准,因此会报错。文章提供了两种解决方法:使用聚合函数处理非聚合列,或将GROUP BY与ORDER BY拆分为两层查询。最后总结指出,SQL-92标准更为严谨合理,建议开发者遵循此规范以避免潜在问题。
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
55 9
MySQL的架构与SQL语句执行过程
MySQL架构分为Server层和存储引擎层,具有高度灵活性和可扩展性。Server层包括连接器、查询缓存(MySQL 8.0已移除)、分析器、优化器和执行器,负责处理SQL语句;存储引擎层负责数据的存储和读取,常见引擎有InnoDB、MyISAM和Memory。SQL执行过程涉及连接、解析、优化、执行和结果返回等步骤,本文详细讲解了一条SQL语句的完整执行过程。
66 3
【YashanDB 知识库】如何将 mysql 含有 group by 的 SQL 转换成崖山支持的 SQL
在崖山数据库中执行某些 SQL 语句时出现报错(YAS-04316 not a single-group group function),而这些语句在 MySQL 中能成功执行。原因是崖山遵循 SQL-92 标准,不允许选择列表中包含未在 GROUP BY 子句中指定的非聚合列,而 MySQL 默认允许这种操作。解决办法包括:使用聚合函数处理非聚合列或拆分查询为两层,先进行 GROUP BY 再排序。总结来说,SQL-92 更严格,确保数据一致性,MySQL 在 5.7 及以上版本也默认遵循此标准。
MySQL原理简介—10.SQL语句和执行计划
本文介绍了MySQL执行计划的相关概念及其优化方法。首先解释了什么是执行计划,它是SQL语句在查询时如何检索、筛选和排序数据的过程。接着详细描述了执行计划中常见的访问类型,如const、ref、range、index和all等,并分析了它们的性能特点。文中还探讨了多表关联查询的原理及优化策略,包括驱动表和被驱动表的选择。此外,文章讨论了全表扫描和索引的成本计算方法,以及MySQL如何通过成本估算选择最优执行计划。最后,介绍了explain命令的各个参数含义,帮助理解查询优化器的工作机制。通过这些内容,读者可以更好地理解和优化SQL查询性能。
【MySQL基础篇】全面学习总结SQL语法、DataGrip安装教程
本文详细介绍了MySQL中的SQL语法,包括数据定义(DDL)、数据操作(DML)、数据查询(DQL)和数据控制(DCL)四个主要部分。内容涵盖了创建、修改和删除数据库、表以及表字段的操作,以及通过图形化工具DataGrip进行数据库管理和查询。此外,还讲解了数据的增、删、改、查操作,以及查询语句的条件、聚合函数、分组、排序和分页等知识点。
【MySQL基础篇】全面学习总结SQL语法、DataGrip安装教程
ClickHouse如何整合数据源:MySQL、HDFS...
ClickHouse 是一个强大的列式数据库管理系统,支持多种数据源。常见的数据源包括外部数据源(如 HDFS、File、URL、Kafka 和 RabbitMQ)、数据库(如 MySQL 和 PostgreSQL)和流式数据(如 Stream 和 Materialized Views)。本文介绍了如何从 MySQL 和 HDFS 读取数据到 ClickHouse 中,包括创建数据库、映射表和查询数据的具体步骤。通过这些方法,用户可以方便地将不同来源的数据导入 ClickHouse 进行高效存储和分析。
209 3
MySQL进阶突击系列(02)一条更新SQL执行过程 | 讲透undoLog、redoLog、binLog日志三宝
本文详细介绍了MySQL中update SQL执行过程涉及的undoLog、redoLog和binLog三种日志的作用及其工作原理,包括它们如何确保数据的一致性和完整性,以及在事务提交过程中各自的角色。同时,文章还探讨了这些日志在故障恢复中的重要性,强调了合理配置相关参数对于提高系统稳定性的必要性。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等