大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(一)

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据-02-Hadoop集群 XML配置 超详细 core-site.xml hdfs-site.xml 3节点云服务器 2C4G HDFS Yarn MapRedece(一)

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(正在更新)

章节内容

上一节完成了:


Java的环境配置

Hadoop环境配置

顺利完成了基础环境的配置,但是对于Hadoop来说,目前还有一些XML的配置需要我们修改,这样后续才能组装成集群来运行。

接下来我们就进行一些XML的配置。Hadoop集群配置 = HDFS集群配置 + MapReduce集群配置 + Yarn集群配置。


背景介绍

这里是三台公网云服务器,每台 2C4G,搭建一个Hadoop的学习环境,供我学习。

之前已经在 VM 虚拟机上搭建过一次,但是没留下笔记,这次趁着前几天薅羊毛的3台机器,赶紧尝试在公网上搭建体验一下。


注意,如果你和我一样,打算用公网部署,那一定要做好防火墙策略,避免不必要的麻烦!!!

注意,如果你和我一样,打算用公网部署,那一定要做好防火墙策略,避免不必要的麻烦!!!

注意,如果你和我一样,打算用公网部署,那一定要做好防火墙策略,避免不必要的麻烦!!!


请大家都以学习为目的,也请不要对我的服务进行嗅探或者攻击!!!

请大家都以学习为目的,也请不要对我的服务进行嗅探或者攻击!!!

请大家都以学习为目的,也请不要对我的服务进行嗅探或者攻击!!!


但是有一台公网服务器我还运行着别的服务,比如前几天发的:autodl-keeper 自己写的小工具,防止AutoDL机器过期的。还跑着别的Web服务,所以只能挤出一台 2C2G 的机器。那我的配置如下了:


2C4G 编号 h121

2C4G 编号 h122

2C2G 编号 h123

基本介绍

HDFS(Hadoop Distributed File System)是Apache Hadoop框架中用于存储大数据的分布式文件系统。它具有高容错性和高扩展性的特点,专为在廉价硬件上运行而设计,能够处理大规模数据集。


核心概念

文件系统架构:HDFS基于主从架构,由NameNode(主节点)和多个DataNode(数据节点)组成:NameNode负责存储元数据,如文件目录、块位置信息等。它不会存储文件本身,而是维护文件块与DataNode的映射。DataNode负责实际存储文件数据。HDFS将文件拆分成多个固定大小的块(默认64MB或128MB),并将这些块分布式存储在不同的DataNode上。

冗余与容错:为了保证数据安全,每个数据块都会被复制到多个DataNode上,默认是三个副本。这种机制可以防止数据丢失,即使某些节点发生故障,数据仍可从其他副本中恢复。

流式数据访问:HDFS适合一次写入、多次读取的访问模式,主要用于批处理场景。它不支持像传统文件系统那样的随机写操作。

工作流程

数据写入:客户端将文件写入HDFS时,文件会被拆分成块并分别存储到不同的DataNode上。NameNode会记录每个数据块的位置信息。当写入完成后,副本机制开始将数据复制到其他DataNode。

数据读取:客户端从HDFS读取文件时,首先从NameNode获取文件块的位置信息,然后直接从对应的DataNode下载文件块。这种设计使得数据读取可以并行化,提升了读性能。

优势

可扩展性:HDFS可以水平扩展,通过增加DataNode来扩大存储容量。

高容错性:由于数据块的多副本机制,HDFS能有效应对硬件故障。当某个DataNode失效时,数据依然可从其他副本恢复。

数据本地化:在Hadoop MapReduce中,计算任务会尽量安排在数据存储节点附近,以减少网络传输,提高计算效率。

局限性

不支持低延迟数据访问:HDFS更适合批处理场景,不适合低延迟的实时查询。

单点故障:NameNode作为整个系统的元数据管理者,如果NameNode故障,整个HDFS将无法正常工作。不过,通过引入高可用(HA)机制,这个问题可以得到解决。

小文件问题:HDFS对小文件的处理效率较低,因为每个文件都需要元数据管理,小文件过多会给NameNode带来较大压力。

集群配置

由于我也是参考着别人的内容,这里有一个对应的关系:


h121对应linux121

h122对应linux122

h123对应linux123

我们需要配置的内容如下图:

Hadoop集群配置 = HDFS集群配置 + MapReduce集群配置 + Yarn集群配置

  • 按照上图,一步一步来配置。

HDFS集群

运行环境

cd /opt/servers/hadoop-2.9.2/etc/hadoop


修改 hadoop 的运行内容

vim hadoop-env.sh
• 1

找到 JAVA_HOME 的部分,配置为我们上节配置的地址:(防止后续的一系列不必要的问题,血泪史)

NameNode

cd /opt/servers/hadoop-2.9.2/etc/hadoop 
• 1

修改 core-site.xml

sudo vim core-site.xml

添加如下的内容

<!-- HDFS NameNode 地址 -->
<property>
        <name>fs.defaultFS</name>
        <value>hdfs://h121.wzk.icu:9000</value>
</property>
<property>
        <name>hadoop.tmp.dir</name>
        <value>/opt/servers/hadoop-2.9.2/data/tmp</value>
</property>

当前的完整配置如下:

core-site.xml 中的所有参数地址:https://hadoop.apache.org/docs/r2.9.2/hadoop-project-dist/hadoop-common/core-default.xml


SecondaryNameNode

vim hdfs-site.xml

将下面的内容加入进去:

<!-- Hadoop 辅助节点地址 -->
<property>
        <name>dfs.namenode.secondary.http-address</name>
        <value>h123.wzk.icu:50090</value>
</property>
<!-- 副本数量 -->
<property>
        <name>dfs.replication</name>
        <value>3</value>
</property>

当前的完整配置如下:

DataNode

sudo vim slaves
• 1

这里是你的3台节点的名称,或者域名。

接下篇:https://developer.aliyun.com/article/1621577

相关实践学习
2分钟自动化部署人生模拟器
本场景将带你借助云效流水线Flow实现人生模拟器小游戏的自动化部署
7天玩转云服务器
云服务器ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,可降低 IT 成本,提升运维效率。本课程手把手带你了解ECS、掌握基本操作、动手实操快照管理、镜像管理等。了解产品详情:&nbsp;https://www.aliyun.com/product/ecs
目录
相关文章
|
3月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
223 6
|
3月前
|
分布式计算 资源调度 大数据
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(一)
127 0
|
3月前
|
分布式计算 资源调度 大数据
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(二)
大数据-110 Flink 安装部署 下载解压配置 Standalone模式启动 打包依赖(二)
111 0
|
3月前
|
存储 分布式计算 druid
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
60 1
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
|
3月前
|
运维 监控 数据可视化
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
143 1
|
3月前
|
消息中间件 分布式计算 druid
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(二)
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(二)
56 2
|
3月前
|
存储 消息中间件 druid
大数据-151 Apache Druid 集群模式 配置启动【上篇】 超详细!
大数据-151 Apache Druid 集群模式 配置启动【上篇】 超详细!
115 1
|
3月前
|
SQL 消息中间件 分布式计算
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(一)
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(一)
108 0
|
3月前
|
SQL 大数据
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(二)
大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(二)
101 0
|
3月前
|
消息中间件 NoSQL Kafka
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
262 0