Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource

代码仓库

会同步代码到 GitHub

https://github.com/turbo-duck/flink-demo

pom.xml

修改pom.xml,需要加入 kafka相关的包,和适配器。

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>flink-demo-01</artifactId>
    <version>1.0-SNAPSHOT</version>

    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <flink.version>1.13.2</flink.version>
        <scala.binary.version>2.12</scala.binary.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka_2.11</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>3.0.0</version>
        </dependency>
    </dependencies>
</project>

编写代码

设置 Kafka 配置

Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "0.0.0.0:9092");

创建Kafka消费者


FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("test", new SimpleStringSchema(), properties);

添加数据源


DataStreamSource<String> data = env.addSource(consumer);


FlatMap


SingleOutputStreamOperator<Tuple2<String, Long>> wordAndOne = data.flatMap(new FlatMapFunction<String, Tuple2<String, Long>>() {
    public void flatMap(String s, Collector<Tuple2<String, Long>> collector) throws Exception {
        for (String word : s.split(" ")) {
            collector.collect(Tuple2.of(word, 1L));
        }
    }
});


计算求和


SingleOutputStreamOperator<Tuple2<String, Long>> result = wordAndOne
    .keyBy(new KeySelector<Tuple2<String, Long>, Object>() {
        @Override
        public Object getKey(Tuple2<String, Long> value) throws Exception {
            return value.f0;
        }
    })
    .sum(1);


全部代码

package icu.wzk.demo04;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.util.Collector;

import java.util.Properties;

public class StartApp {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers","0.0.0.0:9092");
        FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("test", new SimpleStringSchema(), properties);
        DataStreamSource<String> data = env.addSource(consumer);
        SingleOutputStreamOperator<Tuple2<String, Long>> wordAndOne = data.flatMap(new FlatMapFunction<String, Tuple2<String, Long>>() {
            public void flatMap(String s, Collector<Tuple2<String, Long>> collector) throws Exception {
                for (String word : s.split(" ")) {
                    collector.collect(Tuple2.of(word, 1L));
                }
            }
        });
        SingleOutputStreamOperator<Tuple2<String, Long>> result = wordAndOne
                .keyBy(new KeySelector<Tuple2<String, Long>, Object>() {
                    @Override
                    public Object getKey(Tuple2<String, Long> value) throws Exception {
                        return value.f0;
                    }
                })
                .sum(1);
        result.print();
        env.execute();
    }

}

KafkaProducer

package icu.wzk.demo04;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.Properties;

public class TestKafkaProducer {

    public static void main(String[] args) throws InterruptedException {
        Properties props = new Properties();
        props.put("bootstrap.servers", "0.0.0.0:9092");
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        Producer<String, String> producer = new KafkaProducer<>(props);
        for (int i = 0; i < 500; i++) {
            String key = "key-" + i;
            String value = "value-" + i;
            ProducerRecord<String, String> record = new ProducerRecord<>("test", key, value);
            producer.send(record);
            System.out.println("send: " + key);
            Thread.sleep(200);
        }
        producer.close();
    }

}

目录
相关文章
|
17天前
|
前端开发 JavaScript Java
java常用数据判空、比较和类型转换
本文介绍了Java开发中常见的数据处理技巧,包括数据判空、数据比较和类型转换。详细讲解了字符串、Integer、对象、List、Map、Set及数组的判空方法,推荐使用工具类如StringUtils、Objects等。同时,讨论了基本数据类型与引用数据类型的比较方法,以及自动类型转换和强制类型转换的规则。最后,提供了数值类型与字符串互相转换的具体示例。
|
24天前
|
JSON Java 程序员
Java|如何用一个统一结构接收成员名称不固定的数据
本文介绍了一种 Java 中如何用一个统一结构接收成员名称不固定的数据的方法。
25 3
|
1月前
|
Java 程序员 容器
Java中的变量和常量:数据的‘小盒子’和‘铁盒子’有啥不一样?
在Java中,变量是一个可以随时改变的数据容器,类似于一个可以反复打开的小盒子。定义变量时需指定数据类型和名称。例如:`int age = 25;` 表示定义一个整数类型的变量 `age`,初始值为25。 常量则是不可改变的数据容器,类似于一个锁死的铁盒子,定义时使用 `final` 关键字。例如:`final int MAX_SPEED = 120;` 表示定义一个名为 `MAX_SPEED` 的常量,值为120,且不能修改。 变量和常量的主要区别在于变量的数据可以随时修改,而常量的数据一旦确定就不能改变。常量主要用于防止意外修改、提高代码可读性和便于维护。
|
1月前
|
存储 缓存 安全
在 Java 编程中,创建临时文件用于存储临时数据或进行临时操作非常常见
在 Java 编程中,创建临时文件用于存储临时数据或进行临时操作非常常见。本文介绍了使用 `File.createTempFile` 方法和自定义创建临时文件的两种方式,详细探讨了它们的使用场景和注意事项,包括数据缓存、文件上传下载和日志记录等。强调了清理临时文件、确保文件名唯一性和合理设置文件权限的重要性。
72 2
|
1月前
|
Java
Java 8 引入的 Streams 功能强大,提供了一种简洁高效的处理数据集合的方式
Java 8 引入的 Streams 功能强大,提供了一种简洁高效的处理数据集合的方式。本文介绍了 Streams 的基本概念和使用方法,包括创建 Streams、中间操作和终端操作,并通过多个案例详细解析了过滤、映射、归并、排序、分组和并行处理等操作,帮助读者更好地理解和掌握这一重要特性。
31 2
|
1月前
|
消息中间件 Kafka 流计算
FlinkKafkaConsumer相同group.id多个任务消费kafka问题
当使用FlinkKafkaConsumer消费Kafka时,即使设置了相同的group.id,由于Flink内部管理partition的消费offset,两个程序仍能同时消费所有数据。这与KafkaConsumer不同,后者严格遵循消费组隔离原则,避免重复消费同一分区的数据。Flink为实现exactly-once语义,需要独立管理offset,这导致了上述现象。
|
1月前
|
存储 分布式计算 Java
存算分离与计算向数据移动:深度解析与Java实现
【11月更文挑战第10天】随着大数据时代的到来,数据量的激增给传统的数据处理架构带来了巨大的挑战。传统的“存算一体”架构,即计算资源与存储资源紧密耦合,在处理海量数据时逐渐显露出其局限性。为了应对这些挑战,存算分离(Disaggregated Storage and Compute Architecture)和计算向数据移动(Compute Moves to Data)两种架构应运而生,成为大数据处理领域的热门技术。
62 2
|
1月前
|
消息中间件 缓存 Java
java nio,netty,kafka 中经常提到“零拷贝”到底是什么?
零拷贝技术 Zero-Copy 是指计算机执行操作时,可以直接从源(如文件或网络套接字)将数据传输到目标缓冲区, 而不需要 CPU 先将数据从某处内存复制到另一个特定区域,从而减少上下文切换以及 CPU 的拷贝时间。
java nio,netty,kafka 中经常提到“零拷贝”到底是什么?
|
2月前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
103 1
|
4月前
|
消息中间件 Java Kafka
Kafka不重复消费的终极秘籍!解锁幂等性、偏移量、去重神器,让你的数据流稳如老狗,告别数据混乱时代!
【8月更文挑战第24天】Apache Kafka作为一款领先的分布式流处理平台,凭借其卓越的高吞吐量与低延迟特性,在大数据处理领域中占据重要地位。然而,在利用Kafka进行数据处理时,如何有效避免重复消费成为众多开发者关注的焦点。本文深入探讨了Kafka中可能出现重复消费的原因,并提出了四种实用的解决方案:利用消息偏移量手动控制消费进度;启用幂等性生产者确保消息不被重复发送;在消费者端实施去重机制;以及借助Kafka的事务支持实现精确的一次性处理。通过这些方法,开发者可根据不同的应用场景灵活选择最适合的策略,从而保障数据处理的准确性和一致性。
350 9