使用vanna实现Text2SQL

简介: 这篇文章介绍了如何使用Vanna将自然语言转换为SQL查询,包括安装Vanna、配置数据库连接以及运行查询的全过程。

这节一起用vanna来实现自然语言转SQL,之前的大模型一直停留在问答阶段,答案基本都是大模型提供的,至多是加点本地知识库,tet,pdf等文档,丰富大模型的内容,但是想要大模型与一些管理系统对接还是无能为力,这节就一起尝试下用vanna对接数据库,将自然语言转成标准的SQL对数据库进行查询。这也是很多管理系统的开发者最需要落地实践的内容。

使用vanna之前需要打开vanna的官网申请一个key,如果之前没有注册过的话,还需要先注册一个vanna的账号,注册成功后,在申请KEY的页面申请key申请之后鼠标悬停在中间的输入框上,key就会显示出来。

因为vanna是python实现的,我这里也用python开发,用的pycharm编辑器,需要导入vanna,在pycharm的命令提示符输入:

pip install vanna

安装成功后,按照官网的步骤对接vanna,这里使用的是vanna的数据库,

from vanna.remote import VannaDefault
vn = VannaDefault(model='chinook', api_key='your_key')

vn.connect_to_sqlite('https://vanna.ai/Chinook.sqlite')
from vanna.flask import VannaFlaskApp
VannaFlaskApp(vn).run()

然后点击运行,运行成功后,会在控制台打印出访问地址,打开后页面如下

输入问题后,他会将问题转化成标准的SQL语句进行查询,并用表格展示,同时,vanna会根据自己的理解使用适当的表格展示

相关文章
|
1月前
|
SQL 存储 人工智能
Vanna:开源 AI 检索生成框架,自动生成精确的 SQL 查询
Vanna 是一个开源的 Python RAG(Retrieval-Augmented Generation)框架,能够基于大型语言模型(LLMs)为数据库生成精确的 SQL 查询。Vanna 支持多种 LLMs、向量数据库和 SQL 数据库,提供高准确性查询,同时确保数据库内容安全私密,不外泄。
126 7
Vanna:开源 AI 检索生成框架,自动生成精确的 SQL 查询
|
5月前
|
SQL 数据管理 关系型数据库
《SQL转换秘籍:Vanna+Qwen双剑合璧,轻松实现私有模型转换》——揭秘如何利用Vanna和Qwen这两款神级工具,让你的SQL数据管理和转换如虎添翼!
【8月更文挑战第17天】Vanna与Qwen是两款优秀的开源数据库管理工具,助力用户高效管理及转换SQL数据。先安装Vanna和Qwen,随后在Vanna中创建并编辑私有模型,定义表结构等。完成模型构建后,导出为SQL文件。接着,在Qwen中导入此文件,并根据目标数据库类型(如MySQL)转换SQL语句。例如,生成创建`users`表的SQL代码。这两款工具显著提升了数据库管理工作流程的便捷性与效率。
222 1
|
8月前
|
SQL 自然语言处理 关系型数据库
NL2SQL进阶系列(3):Data-Copilot、Chat2DB、Vanna Text2SQL优化框架开源应用实践详解[Text2SQL]
NL2SQL进阶系列(3):Data-Copilot、Chat2DB、Vanna Text2SQL优化框架开源应用实践详解[Text2SQL]
NL2SQL进阶系列(3):Data-Copilot、Chat2DB、Vanna Text2SQL优化框架开源应用实践详解[Text2SQL]
|
8月前
|
SQL 存储 开发工具
vanna+qwen实现私有模型的SQL转换
本文档介绍了如何在本地部署Vanna服务以使用Qwen模型进行text2sql转换。首先,通过`snapshot_download`下载Qwen-7B-Chat模型,并安装相关依赖。接着,修改`openai_api.py`设置本地LLM服务接口。然后,安装并配置Vanna Flask服务,包括自定义LLM服务、连接数据库以及修改端口。为了解决内网访问问题,使用ngrok或natapp进行内网穿透,提供公网访问。最后,处理了chromadb包中自动下载资源的问题,以防网络不佳导致的失败。通过这些步骤,实现了使用本地Qwen模型的Vanna服务。
5677 1
|
4月前
|
关系型数据库 MySQL 网络安全
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
5-10Can't connect to MySQL server on 'sh-cynosl-grp-fcs50xoa.sql.tencentcdb.com' (110)")
|
6月前
|
SQL 存储 监控
SQL Server的并行实施如何优化?
【7月更文挑战第23天】SQL Server的并行实施如何优化?
144 13
|
6月前
|
SQL
解锁 SQL Server 2022的时间序列数据功能
【7月更文挑战第14天】要解锁SQL Server 2022的时间序列数据功能,可使用`generate_series`函数生成整数序列,例如:`SELECT value FROM generate_series(1, 10)。此外,`date_bucket`函数能按指定间隔(如周)对日期时间值分组,这些工具结合窗口函数和其他时间日期函数,能高效处理和分析时间序列数据。更多信息请参考官方文档和技术资料。
|
6月前
|
SQL 存储 网络安全
关系数据库SQLserver 安装 SQL Server
【7月更文挑战第26天】
81 6
|
6月前
|
存储 SQL C++
对比 SQL Server中的VARCHAR(max) 与VARCHAR(n) 数据类型
【7月更文挑战7天】SQL Server 中的 VARCHAR(max) vs VARCHAR(n): - VARCHAR(n) 存储最多 n 个字符(1-8000),适合短文本。 - VARCHAR(max) 可存储约 21 亿个字符,适合大量文本。 - VARCHAR(n) 在处理小数据时性能更好,空间固定。 - VARCHAR(max) 对于大文本更合适,但可能影响性能。 - 选择取决于数据长度预期和业务需求。
497 1