PostgreSQL - 01 PostgreSQL + PostGIS + Docker 空间计算!判断坐标点是否在某个区域中 POINT MULTIPOLYGON ST_Contains

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: PostgreSQL - 01 PostgreSQL + PostGIS + Docker 空间计算!判断坐标点是否在某个区域中 POINT MULTIPOLYGON ST_Contains

代码仓库

所有东西已经打包放到GitHhub,需要的小伙伴可以直接拉取。顺手可以帮忙点个Star!

https://github.com/turbo-duck/postgre-gis

背景介绍

我们有一批坐标点和一批区域点。

比如: 100万个点,和10万个区域块。

我们遇到了这样的需求:这100万个点,分别属于哪个区域块?

初始解决

通过空间的计算方法,我们用 O(n2)的方式:

# 伪代码
for poi in poi_list:
  for aoi in aoi_list:
    # 做一些空间计算
    result = compute(aoi, poi)
    if result:
      # 在这个空间
      save()
    else:
      # 不在这个空间
      other()

但是这样的计算时间实在是太久,于是我们用空间数据库进行优化,于是有了下文:

O(n2) -> O(n),之前需要跑三天三夜的结果,现在只需要短短的几秒就可以跑完。

Docker

FROM postgis/postgis:latest
ENV POSTGRES_DB=space
ENV POSTGRES_USER=postgres
ENV POSTGRES_PASSWORD=123123
EXPOSE 5432
COPY init-db.sh /docker-entrypoint-initdb.d/

init-db.sh

#!/bin/bash
set -e
psql -v ON_ERROR_STOP=1 --username "$POSTGRES_USER" --dbname "$POSTGRES_DB" <<-EOSQL
    CREATE EXTENSION IF NOT EXISTS postgis;
EOSQL

psql -v ON_ERROR_STOP=1 --username "$POSTGRES_USER" --dbname "$POSTGRES_DB" <<-EOSQL
  CREATE TABLE "public"."aoi" (
    "name" varchar(500) COLLATE "pg_catalog"."default" NOT NULL,
    "geom" geometry(GEOMETRY) NOT NULL
  );
  ALTER TABLE "public"."aoi"
    OWNER TO "postgres";
  CREATE INDEX "geom" ON "public"."aoi" USING btree (
    "geom" "public"."btree_geometry_ops" ASC NULLS LAST
  );
  CREATE INDEX "name" ON "public"."aoi" USING btree (
    "name" COLLATE "pg_catalog"."default" "pg_catalog"."text_ops" ASC NULLS LAST
  );
  CREATE INDEX "name_geom" ON "public"."aoi" USING btree (
    "name" COLLATE "pg_catalog"."default" "pg_catalog"."text_ops" ASC NULLS LAST,
    "geom" "public"."btree_geometry_ops" ASC NULLS LAST
  );
EOSQL

psql -v ON_ERROR_STOP=1 --username "$POSTGRES_USER" --dbname "$POSTGRES_DB" <<-EOSQL
  CREATE TABLE "public"."poi" (
    "name" varchar(500) COLLATE "pg_catalog"."default" NOT NULL,
    "geom" geometry(GEOMETRY) NOT NULL
  );
  ALTER TABLE "public"."poi"
    OWNER TO "postgres";
  CREATE INDEX "geom_copy1" ON "public"."poi" USING btree (
    "geom" "public"."btree_geometry_ops" ASC NULLS LAST
  );
  CREATE INDEX "name_copy1" ON "public"."poi" USING btree (
    "name" COLLATE "pg_catalog"."default" "pg_catalog"."text_ops" ASC NULLS LAST
  );
  CREATE INDEX "name_geom_copy1" ON "public"."poi" USING btree (
    "name" COLLATE "pg_catalog"."default" "pg_catalog"."text_ops" ASC NULLS LAST,
    "geom" "public"."btree_geometry_ops" ASC NULLS LAST
  );
EOSQL

写入 AOI

import pandas as pd
import psycopg2
from openpyxl import Workbook
import re


wb = Workbook()
ac = wb.active
line = ['name', 'data', 'origin']
ac.append(line)
# 是否出现错误
error_flag = 0
conn = psycopg2.connect(database="space", user="postgres", password="123123", host="localhost")
cur = conn.cursor()
aoi_file = pd.read_excel("./aoi.xlsx", engine='openpyxl')
line_num = aoi_file.shape[0]

# 清空表
clean_sql = "DELETE FROM aoi WHERE 1=1"
cur.execute(clean_sql)
conn.commit()

for i in range(0, line_num):
    get_name = aoi_file.iat[i, 0]
    '''
    {"type":
        "Polygon",
        "coordinates": [[[
            121.342079,31.417835],[121.342105,31.417812],[121.34214,31.417802],
            [121.342177,31.4178],[121.343274,31.417851],[121.343306,31.41786],[121.343333,31.417879],
            [121.343354,31.417911],[121.343364,31.417945],[121.343424,31.419663],[121.343423,31.419707],
            [121.343414,31.419746],[121.343384,31.419832],[121.343351,31.419903],[121.343318,31.419927],
            [121.343276,31.419931],[121.341537,31.419355],[121.341508,31.419332],[121.341486,31.419301],
            [121.341486,31.419268],[121.341496,31.41923],[121.342056,31.417871],[121.342079,31.417835
        ]]]}
    '''
    get_geom = aoi_file.iat[i, 1]
    origin_geom = get_geom
    get_geom = re.sub(' ', '', str(get_geom))
    get_geom = re.sub('MultiPolygon', 'Polygon', str(get_geom))
    get_geom = re.sub("\[\[\[\[", '[[[', str(get_geom))
    get_geom = re.sub("\]\]\]\]", ']]]', str(get_geom))
    get_geom = re.sub('\{', ' ', str(get_geom))
    get_geom = re.sub('\}', ' ', str(get_geom))
    get_geom = re.sub('"type":"Polygon"', "", str(get_geom))
    get_geom = re.sub('"coordinates":\[\[\[', '', str(get_geom))
    get_geom = re.sub('\]\]\]', '', str(get_geom))
    get_geom = re.sub(' ', '', str(get_geom))
    get_geom = re.sub(',', ' ', str(get_geom))
    get_geom = re.sub('\] \[', ',', str(get_geom))
    print(get_name)
    # INSERT INTO geometries VALUES(
    # 'B0FFG1YVX3',
    # 'MULTIPOLYGON(((120.394543 36.113915,120.39454 36.113898,120.394539 36.113869,120.394548
    # 36.113844,120.394586 36.113812,120.396095 36.11299,120.396118 36.112986,120.396133 36.112988
    # ,120.39615 36.112998,120.39712 36.114184,120.39713 36.114219,120.397129 36.114262,120.397118 36.114297
    # ,120.397101 36.114325,120.397075 36.114359,120.397043 36.114389,120.396994 36.114425,120.39584 36.115065,
    # 120.395818 36.11507,120.395793 36.115071,120.395762 36.115068,120.395719 36.115058,120.395686 36.115043,
    # 120.395661 36.115029,120.394543 36.113915)))');
    sql = "INSERT INTO aoi VALUES('" + str(get_name) + "'," + \
        "'MULTIPOLYGON(((" + str(get_geom) + ")))');"
    try:
        cur.execute(sql)
        conn.commit()
    except Exception as e:
        error_flag = 1
        conn.rollback()
        line = [str(get_name), str(get_geom), str(origin_geom)]
        ac.append(line)
        print(e)
        print(sql)
conn.close()

# 0 no error | 1 have error
if error_flag == 1:
    try:
        wb.save("./error_data.xlsx")
    except PermissionError:
        wb.save("./new_error_data.xlsx")

写入 POI

import pandas as pd
import psycopg2
import re

conn = psycopg2.connect(database="space", user="postgres", password="123123", host="localhost")
cur = conn.cursor()
poi_file = pd.read_excel("./poi.xlsx", engine='openpyxl')
line_num = poi_file.shape[0]

# 清空表
clean_sql = "DELETE FROM poi WHERE 1=1"
cur.execute(clean_sql)
conn.commit()

for i in range(0, line_num):
    get_name = poi_file.iat[i, 0]
    '''
    121.56042,31.20459
    '''
    get_poi = poi_file.iat[i, 1]
    origin_poi = get_poi
    get_poi = re.sub(" ", "", str(get_poi))
    get_poi = re.sub(",", " ", str(get_poi))
    get_poi = re.sub(",", " ", str(get_poi))
    print(get_name)
    if str(get_name) == 'nan':
        continue
    # INSERT INTO geometries VALUES(
    # 'B0FFG1YVX3',
    # 'MULTIPOLYGON(((120.394543 36.113915,120.39454 36.113898,120.394539 36.113869,120.394548
    # 36.113844,120.394586 36.113812,120.396095 36.11299,120.396118 36.112986,120.396133 36.112988
    # ,120.39615 36.112998,120.39712 36.114184,120.39713 36.114219,120.397129 36.114262,120.397118 36.114297
    # ,120.397101 36.114325,120.397075 36.114359,120.397043 36.114389,120.396994 36.114425,120.39584 36.115065,
    # 120.395818 36.11507,120.395793 36.115071,120.395762 36.115068,120.395719 36.115058,120.395686 36.115043,
    # 120.395661 36.115029,120.394543 36.113915)))');
    sql = "INSERT INTO poi VALUES('" + str(get_name) + "'," + \
            "'POINT(" + str(get_poi) + ")');"
    try:
        cur.execute(sql)
    except Exception as e:
        print(e)
        print(f"sql => {sql}")
        print(f"get_name => {get_name} | get_poi => {get_poi}")
        exit(0)
conn.commit()
conn.close()

判断 POI IN AOI

import psycopg2
from openpyxl import Workbook

wb = Workbook()
ac = wb.active
line = ['poi_name', 'aoi_name']
ac.append(line)

conn = psycopg2.connect(database="nyc", user="postgres", password="123123", host="localhost")
cur = conn.cursor()
# 建立索引
# sql = "CREATE INDEX aoi_idx ON aoi USING GIST (geom);"
# cur.execute(sql)
# conn.commit()
# 查询结果
sql = "SELECT aoi.name, poi.name FROM aoi, poi where ST_Contains(aoi.geom, poi.geom);"
print("正在判断···")
cur.execute(sql)
rows = cur.fetchall()
for row in rows:
    result_aoi = row[0]
    result_poi = row[1]
    line = [str(result_poi), str(result_aoi)]
    ac.append(line)
    print(result_poi)
conn.close()
print("save xlsx")
wb.save("./poiInAoiResult.xlsx")
print("done")


相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
关系型数据库 Linux PostgreSQL
Linux centos8 docker中安装postgresql12.4及远程访问设置
Linux centos8 docker中安装postgresql12.4及远程访问设置
723 0
|
关系型数据库 数据库 PostgreSQL
使用 Docker 在 Windows、Mac 和 Linux 系统轻松部署 PostgreSQL 数据库
使用 Docker 在 Windows、Mac 和 Linux 系统轻松部署 PostgreSQL 数据库
551 1
|
5月前
|
SQL 关系型数据库 数据库
PostgreSQL将边界geometry转换为坐标
【8月更文挑战第5天】PostgreSQL将边界geometry转换为坐标
239 10
|
4月前
|
关系型数据库 数据库 网络虚拟化
Docker环境下重启PostgreSQL数据库服务的全面指南与代码示例
由于时间和空间限制,我将在后续的回答中分别涉及到“Python中采用lasso、SCAD、LARS技术分析棒球运动员薪资的案例集锦”以及“Docker环境下重启PostgreSQL数据库服务的全面指南与代码示例”。如果你有任何一个问题的优先顺序或需要立即回答的,请告知。
81 0
|
8月前
|
关系型数据库 Java 数据库
docker部署postgresql数据库和整合springboot连接数据源
docker部署postgresql数据库和整合springboot连接数据源
169 0
|
8月前
|
关系型数据库 数据库 PostgreSQL
Docker安装postgreSql
Docker安装postgreSql步骤
|
8月前
|
关系型数据库 数据库 PostgreSQL
Docker【应用 03】给Docker部署的PostgreSQL数据库安装PostGIS插件(安装流程及问题说明)
Docker【应用 03】给Docker部署的PostgreSQL数据库安装PostGIS插件(安装流程及问题说明)
471 0
|
8月前
|
关系型数据库 数据库 PostgreSQL
PostgreSQL【应用 01】使用Vector插件实现向量相似度查询(Docker部署的PostgreSQL安装pgvector插件说明)和Milvus向量库对比
PostgreSQL【应用 01】使用Vector插件实现向量相似度查询(Docker部署的PostgreSQL安装pgvector插件说明)和Milvus向量库对比
700 1
|
8月前
|
SQL 关系型数据库 C语言
PostgreSQL【应用 03】Docker部署的PostgreSQL扩展SQL之C语言函数(编写、编译、载入)计算向量余弦距离实例分享
PostgreSQL【应用 03】Docker部署的PostgreSQL扩展SQL之C语言函数(编写、编译、载入)计算向量余弦距离实例分享
109 0
|
8月前
|
SQL 关系型数据库 PostgreSQL
PostgreSQL【部署 01】离线安装PostgreSQL+PostGIS踩坑及问题解决经验分享(含安装文件PostgreSQL+PostGIS及多个依赖+测试SQL)
PostgreSQL【部署 01】离线安装PostgreSQL+PostGIS踩坑及问题解决经验分享(含安装文件PostgreSQL+PostGIS及多个依赖+测试SQL)
889 0

热门文章

最新文章