LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
简介: LangChain-26 Custom Agent 自定义一个Agent并通过@tool绑定对应的工具 同时让大模型自己调用编写的@tools函数

安装依赖

pip install -qU langchain-core langchain-openai

编写代码

定义一个工具

# 定义工具
@tool
def get_word_length(word: str) -> int:
    """Returns the length of a word."""
    return len(word)

创建一个Agent

# 创建Agent
agent = (
    {
        "input": lambda x: x["input"],
        "agent_scratchpad": lambda x: format_to_openai_tool_messages(
            x["intermediate_steps"]
        ),
    }
    | prompt
    | llm_with_tools
    | OpenAIToolsAgentOutputParser()
)

推荐使用GPT-4GPT3.5任务表现上并不是很好。

完整的代码如下

from langchain_openai import ChatOpenAI
from langchain.agents import tool
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.agents.format_scratchpad.openai_tools import (
    format_to_openai_tool_messages,
)
from langchain.agents.output_parsers.openai_tools import OpenAIToolsAgentOutputParser
from langchain.agents import AgentExecutor


llm = ChatOpenAI(model="gpt-4-turbo-preview", temperature=0)
# llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)

# 定义工具
@tool
def get_word_length(word: str) -> int:
    """Returns the length of a word."""
    return len(word)


# print(get_word_length.invoke("abc"))
# 定义一个工具集
tools = [get_word_length]
# 提示词
prompt = ChatPromptTemplate.from_messages(
    [
        (
            "system",
            "You are very powerful assistant, but don't know current events",
        ),
        (
            "user",
            "{input}"
        ),
        MessagesPlaceholder(variable_name="agent_scratchpad"),
    ]
)

# 绑定工具集
llm_with_tools = llm.bind_tools(tools)

# 创建Agent
agent = (
    {
        "input": lambda x: x["input"],
        "agent_scratchpad": lambda x: format_to_openai_tool_messages(
            x["intermediate_steps"]
        ),
    }
    | prompt
    | llm_with_tools
    | OpenAIToolsAgentOutputParser()
)
# 执行器
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
agent_executor_stream = list(agent_executor.stream({"input": "How many letters in the word eudca"}))
print(f"agent_executor_stream: {agent_executor_stream}")

执行结果

➜ python3 test27.py


> Entering new AgentExecutor chain...

Invoking: `get_word_length` with `{'word': 'eudca'}`


5The word "eudca" has 5 letters.

> Finished chain.
agent_executor_stream: [{'actions': [OpenAIToolAgentAction(tool='get_word_length', tool_input={'word': 'eudca'}, log="\nInvoking: `get_word_length` with `{'word': 'eudca'}`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_Oo2mhYvyOHkw4YvzaL1Gz0tb', 'function': {'arguments': '{"word":"eudca"}', 'name': 'get_word_length'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls'})], tool_call_id='call_Oo2mhYvyOHkw4YvzaL1Gz0tb')], 'messages': [AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_Oo2mhYvyOHkw4YvzaL1Gz0tb', 'function': {'arguments': '{"word":"eudca"}', 'name': 'get_word_length'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls'})]}, {'steps': [AgentStep(action=OpenAIToolAgentAction(tool='get_word_length', tool_input={'word': 'eudca'}, log="\nInvoking: `get_word_length` with `{'word': 'eudca'}`\n\n\n", message_log=[AIMessageChunk(content='', additional_kwargs={'tool_calls': [{'index': 0, 'id': 'call_Oo2mhYvyOHkw4YvzaL1Gz0tb', 'function': {'arguments': '{"word":"eudca"}', 'name': 'get_word_length'}, 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls'})], tool_call_id='call_Oo2mhYvyOHkw4YvzaL1Gz0tb'), observation=5)], 'messages': [FunctionMessage(content='5', name='get_word_length')]}, {'output': 'The word "eudca" has 5 letters.', 'messages': [AIMessage(content='The word "eudca" has 5 letters.')]}]

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
目录
相关文章
|
4月前
|
人工智能 自然语言处理 数据挖掘
云上玩转Qwen3系列之三:PAI-LangStudio x Hologres构建ChatBI数据分析Agent应用
PAI-LangStudio 和 Qwen3 构建基于 MCP 协议的 Hologres ChatBI 智能 Agent 应用,通过将 Agent、MCP Server 等技术和阿里最新的推理模型 Qwen3 编排在一个应用流中,为大模型提供了 MCP+OLAP 的智能数据分析能力,使用自然语言即可实现 OLAP 数据分析的查询效果,减少了幻觉。开发者可以基于该模板进行灵活扩展和二次开发,以满足特定场景的需求。
|
3月前
|
数据采集 存储 人工智能
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
智能体(AI Agent)开发实战之【LangChain】(二)结合大模型基于RAG实现本地知识库问答
|
5月前
|
自然语言处理 安全 数据挖掘
Hologres+函数计算+Qwen3,对接MCP构建企业级数据分析 Agent
本文介绍了通过阿里云Hologres、函数计算FC和通义千问Qwen3构建企业级数据分析Agent的解决方案。大模型在数据分析中潜力巨大,但面临实时数据接入与跨系统整合等挑战。MCP(模型上下文协议)提供标准化接口,实现AI模型与外部资源解耦。方案利用SSE模式连接,具备高实时性、良好解耦性和轻量级特性。Hologres作为高性能实时数仓,支持多源数据毫秒级接入与分析;函数计算FC以Serverless模式部署,弹性扩缩降低成本;Qwen3则具备强大的推理与多语言能力。用户可通过ModelScope的MCP Playground快速体验,结合TPC-H样例数据完成复杂查询任务。
|
9月前
|
API 数据库 决策智能
基于百炼平台qwen-max的api 打造一套 检索增强 图谱增强 智能工具调用决策的智能体
本文介绍了一种基于阿里云百炼平台的`qwen-max` API构建的智能体方案,该方案集成了检索增强、图谱增强及智能工具调用决策三大模块,旨在通过结合外部数据源、知识图谱和自动化决策提高智能回答的准确性和丰富度。通过具体代码示例展示了如何实现这些功能,最终形成一个能灵活应对多种查询需求的智能系统。
628 11
|
9月前
|
自然语言处理 NoSQL API
基于百炼平台qwen-max的api 打造一套 检索增强 图谱增强 基于指令的智能工具调用决策 智能体
基于百炼平台的 `qwen-max` API,设计了一套融合检索增强、图谱增强及指令驱动的智能工具调用决策系统。该系统通过解析用户指令,智能选择调用检索、图谱推理或模型生成等工具,以提高问题回答的准确性和丰富性。系统设计包括指令解析、工具调用决策、检索增强、图谱增强等模块,旨在通过多种技术手段综合提升智能体的能力。
608 5
|
6月前
|
人工智能 自然语言处理 前端开发
从理论到实践:使用JAVA实现RAG、Agent、微调等六种常见大模型定制策略
大语言模型(LLM)在过去几年中彻底改变了自然语言处理领域,展现了在理解和生成类人文本方面的卓越能力。然而,通用LLM的开箱即用性能并不总能满足特定的业务需求或领域要求。为了将LLM更好地应用于实际场景,开发出了多种LLM定制策略。本文将深入探讨RAG(Retrieval Augmented Generation)、Agent、微调(Fine-Tuning)等六种常见的大模型定制策略,并使用JAVA进行demo处理,以期为AI资深架构师提供实践指导。
698 73
|
3月前
|
人工智能 API 开发者
智能体(AI Agent)开发实战之【LangChain】(一)接入大模型输出结果
LangChain 是一个开源框架,专为构建与大语言模型(LLMs)相关的应用设计。通过集成多个 API、数据源和工具,助力开发者高效构建智能应用。本文介绍了 LangChain 的环境准备(如安装 LangChain、OpenAI 及国内 DeepSeek 等库)、代码实现(以国内开源大模型 Qwen 为例,展示接入及输出结果的全流程),以及核心参数配置说明。LangChain 的灵活性和强大功能使其成为开发对话式智能应用的理想选择。
|
4月前
用Qwen3搭建MCP Agent,有机会瓜分1亿tokens
通义实验室联合阿里云百炼发起有奖征文活动!使用Qwen3+MCP Sever搭建Agent,即有机会瓜分1亿Tokens大奖与限定周边。活动时间:5月6日-5月30日征稿,投稿需包含技术文档、故事分享、演示视频及知识产权承诺书。突出技术创新与场景应用,传播潜力更大!扫码报名并分享至社交平台还有额外抽奖机会,赢定制好礼!
279 11

热门文章

最新文章