从 Elasticsearch 到 Apache Doris 腾讯音乐内容库升级,统一搜索分析引擎,成本直降 80%

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 实现写入性能提升 4 倍、使用成本节省达 80% 的显著成效

导读: 为满足更严苛数据分析的需求,腾讯音乐内容库借助 Apache Doris 替代了 Elasticsearch 集群,统一了内容库数据平台的内容搜索和分析引擎。并基于 Doris 倒排索引和全文检索的能力,支持了复杂的自定义标签计算,实现秒级查询响应需求。此外,实现写入性能提升 4 倍、使用成本节省达 80% 的显著成效。相关文章:#腾讯音乐案例#Elasticsearch 到 Apache Doris 案例#日志场景案例

作者腾讯音乐内容信息平台部,张俊、罗雷、李继蓬、代凯

基于公司丰富的音乐内容资产,将歌曲库、艺人资讯、专辑信息、厂牌信息等大量数据统一存储,形成音乐内容库数据平台,该平台旨在为应用层提供库存盘点、分群画像、指标分析、标签圈选等内容分析服务,高效为业务赋能。

内容库数据平台的数据架构已经从 1.0 版本演进到了 4.0 版本。之前的文章介绍了分析引擎 从 ClickHouse 到 Apache Doris 升级实践本文将重点分享内容搜索引擎从 Elasticsearch 到 Apache Doris 的替换,如何通过一个系统同时满足内容搜索和数据分析的需求,并满足复杂的自定义标签计算的支持。最终,实现存储成本降低 80%,写入性能提升 4 倍的显著效益。

业务需求

从业务角度来看,腾讯音乐内容库有两个场景需要搜索能力的支持,分别是内容库的百科搜索及内容库的标签圈选。

  • 内容库百科搜索: 分析师和运营人员需要快速查找歌手、歌曲名称以及其他文本信息。这种检索能力不仅要求高效的全文搜索,还需支持多种查询条件,以便用户能够迅速获取所需数据,提升工作效率。
  • 内容库标签圈选: 分析师和运营人员会根据特定的标签和条件,筛选出符合要求的内容。这要求系统能够在亿级数据量的情况下,提供秒级的查询响应,以便快速定位和分析相关数据,支持业务决策和策略优化。

业务需求-内容库百度搜索.PNG

业务需求-内容库-标签圈选.PNG

Elasticsearch + Doris 混合架构

在 2.0 版本之前,Doris 暂未推出倒排索引能力,检索能力相对较弱。而 Elasticsearch 在全文检索方面具备优势,能够基于倒排索引快速匹配特定关键词或短语、可对所有字段建立索引,在查询时支持任意组合的过滤条件等。

但是,Elasticsearch 聚合统计分析性能较差,不支持 JOIN 等复杂查询,且存储空间占用较高。这些正是 Apache Doris 所擅长的领域,能够高效处理复杂的统计分析和查询任务,并通过高压缩率优化存储效率。

因此,腾讯音乐内容库构建基于 Elasticsearch 与 Doris 的混合架构,Elasticsearch 负责内容的全文检索和标签圈选,而 Apache Doris 专注于 OLAP 分析。借助 Doris 的 ES catalog 外表查询机制,能够直接查询 Elasticsearch 中数据,实现对外查询接口的统一。

Elasticsearch + Doris 混合架构.PNG

但这套混合架构在应用时,也遇到了一些问题:

  • 存储成本较高:Doris 的引入并没有完全解决存储成本高的问题,Elasticsearch 的存储空间占用仍然显著。
  • 写入性能受限:随着数据量的增长,Elasticsearch 集群的写入压力不断加大,全量写入耗时超过 10 个小时,接近业务可承受极限。
  • 混合架构复杂:Elasticsearch 和 Doris 的混合架构增加了系统和技术栈的维护成本,同时冗余的数据存储也带来了额外费用,两套系统也增加了数据不一致的风险。

基于 Apache Doris 的统一架构方案

因此,腾讯音乐内容库考虑是否可以将搜索引擎统一为 Doris,让其全面负责全文检索、标签圈选以及聚合分析的需求。这样考虑的主要原因是 Apache Doris 自 2.0 版本开始支持倒排索引和全文检索,这使其有能力完全替 Elasticsearch 所负责的部分,获得更好的收益。

  • 在全文检索方面,Doris 不仅支持普通的等值和范围(=, !=, >, >=, <, <=)查询加速,还支持文本字段的全文检索,包括中英文分词、多关键词检索(MATCH_ANY, MATCH_ALL)、短语检索(MATCH_PHRASE, MATCH_PHRASE_PREFIX, MATCH_PHRASE_REGEXP)、短语词距(slop)、多字段检索(MULTI_MATCH),其性能相较于传统数据库支持的 LIKE 模糊匹配有数量级的提升。
  • 在倒排索引方面, Doris 倒排索引在数据库内核中实现,语法与 SQL 无缝结合,支持多种条件的任意 AND OR NOT 逻辑组合,满足普通过滤以及全文检索组合的复杂需求。如下方示例,WHERE 筛选条件由 5 部分组成,包括全文检索 title MATCH '爱' OR description MATCH_PHRASE '热爱',日期范围过滤 dt BETWEEN '2024-09-10 00:00:00' AND '2024-09-10 23:59:59',数值范围过滤 rating > 4,字符串等值过滤 country = '中国',这些条件通过统一的 SQL 语法无缝组合起来,筛选完之后又按照 actor 进行分组统计,最后对分组统计的 cnt 排序取最高的 100 个结果。
SELECT actor, count() as cnt 
FROM table1
WHERE dt BETWEEN '2024-09-10 00:00:00' AND '2024-09-10 23:59:59'
  AND (title MATCH '爱' OR description MATCH_PHRASE '热爱')
  AND rating > 4
  AND country = '中国'
GROUP BY actor
ORDER BY cnt DESC LIMIT 100;

因此,腾讯音乐内容库将 Doris 升级至 2.0 版,将架构从原先的 Elasticsearch 和 Doris 转变为统一的 Doris 解决方案:

基于 Apache Doris 的统一架构方案.png

基于 Doris 的统一架构上线后,所带来的收益也非常可观:

  • 成本显著降低:Doris 替代了 Elasticsearch 集群,同时承载了搜索和分析两类负载,使用成本节省达 80%。比如,某个表单日全量数据在 Elasticsearch 中需要 697.7 GB 存储空间,而在 Doris 中仅需 195.4 GB ,存储空间减少了 72%。

基于 Apache Doris 的统一架构方案-2.png

  • 写入和查询性能提升:全量数据导入时间从 10 小时以上缩短至 3 小时以内, 写入性能是 Elasticsearch 的 4 倍。此外,Doris 可以支持复杂的自定义标签计算,使不可能变为可能,显著改善了用户体验。

  • 统一系统架构:架构统一到 Doris 后,内部只需维护一套技术栈,极大降低了维护成本,同时也很好避免了两套系统之间的数据一致性问题,确保了数据质量的可靠性。

在架构统一的过程中,涉及到一些关键设计,接下来将相关方案及经验分享给读者。

01 Doris 倒排索引的使用

在存储结构上采用了维度表与事实表的方案:

  • 维度表:使用 Merge-on-Write Unique 模型,用于百科搜索和标签圈选,通过部分列更新进行维度更新。
  • 事实表:使用 Aggregate 模型,用于存储每日的指标数据。由于数据量较大且每天的数据独立,每天需新建一个分区。

参考 Doris 倒排索引的使用文档,根据 Elasticsearch Mapping 设计了对应的 Doris 的表结构和索引。其中,Elasticsearch 的 Keyword 类型对应 Doris 的 Varchar/String 类型及不分词的倒排索引(USING INVERTED),ES 的 Text 类型对应 Doris 的 Varchar/String 类型及分词倒排索引(USING INVERTED PROPERTIES("parser" = "english/chinese/unicode"))。

CREATE TABLE `tag_baike_zipper_track_dim_string` (
  `dayno` date NOT NULL COMMENT '日期',
  `id` int(11) NOT NULL COMMENT 'id',
  `a4` varchar(65000) NULL COMMENT 'song_name',
  `a43` varchar(65000) NULL COMMENT 'zyqk_singer_id',
  INDEX idx_a4 (`a4`) USING INVERTED PROPERTIES("parser" = "unicode", "support_phrase" = "true") COMMENT '',
  INDEX idx_a43 (`a43`) USING INVERTED PROPERTIES("parser" = "english") COMMENT ''
) ENGINE=OLAP
UNIQUE KEY(`dayno`, `id`)
COMMENT 'OLAP'
PARTITION BY RANGE(`dayno`)
(PARTITION p99991230 VALUES [('9999-12-30'), ('9999-12-31')))
DISTRIBUTED BY HASH(`id`) BUCKETS auto
PROPERTIES (
...
);

使用 Doris 倒排索引的前后对比:

使用前:以下方复杂查询为例,在使用 Doris 倒排索引之前,该查询运行较慢、响应级别为分钟级。

-- like (查询复杂性能低):
SELECT  * FROM db_tag_pro.tag_track_pro_3  WHERE 
dayno='2024-08-01' AND  ( concat('#',a4,'#') like '%#若月亮还没来#%' 
or concat('#',a43,'#') like '%#1000#%')  

-- explode (执行性能差,经常 ERROR 1105 (HY000)):
SELECT * 
 FROM (
 SELECT tab1.*,a4_single,a43_single FROM ( 
 SELECT * 
 FROM db_tag_pro.tag_track_pro_3
  WHERE dayno='2024-08-01'
 ) tab1 
 lateral view explode_split(a4, '#') tmp1 as a4_single
 lateral view explode_split(a43, '#') tmp2 as a43_single
 ) tab2 
 where a4_single='若月亮还没来' or a43_single='1000'

使用后:使用 Doris 倒排索引之后,查询过程显著简化,运行速度极大提升,响应时间从分钟级缩短至秒级别

  • 对中文采用 unicode 分词,数值采用 english分词创建倒排索引。
  • 设置store_row_column,启用行存,优化select* 查询所有列。
-- 先通过match从维度表搜索查询到id
SELECT  id FROM db_tag_pro.tag_baike_zipper_track_dim_string  WHERE
( a4 MATCH_PHRASE '若月亮还没来' OR a43 MATCH_ALL '1000' )  AND  dayno ='2024-08-01'

-- 再通过id主键查询事实表得到明细数据
SELECT * FROM db_tag_pro.tag_baike_track_pro  WHERE  id IN ( 563559286  )

不仅如此,原来在 Elasticsearch 中由于语句过长而无法查询的复杂自定义标签,在 Doris 内能够更好的支持,Doris 能够处理更长的 SQL 语句。并且在同一个引擎内,可以通过物化视图和 BITMAP 类型轻松对查询后的中间结果进一步优化,避免了不同引擎之间的跨网络同步。

02 业务间资源隔离

为了确保业务侧使用体验和成本可控,我们采用了 Doris 的资源隔离机制进行业务间的资源管理。

  • 第一层:物理隔离(Resource Group) 将集群划分为两个资源组:Core 和 Common,以服务不同重要场景的需求。Core 组专注于内容搜索和标签圈选的核心需求,而 Common 组则处理其他普通需求。通过在节点层面实施物理隔离,可确保核心业务不受其他业务的影响。
  • 第二层:逻辑隔离(Workload Group) 在每个物理隔离内部,通过 Workload Group 对每个 Resource Group 进行逻辑资源的细分。例如,在普通集群中建立多个 Workload Group,并为用户指定默认的 Workload group,以防止单个用户占满整个集群的资源。

业务间资源隔离.png

上述资源隔离机制显著提升了系统的稳定性,告警频率从每天 20 多次降低到每月个位数。这不仅保障了业务的可靠性,还减轻了团队运维管理压力,使他们能够将更多时间投入到系统优化中。

业务无感迁移方案

腾讯音乐内容库自研的 SuperSonic 项目内置了 Headless BI 功能,其核心理念是将数据建模、管理和消费进行解耦。通过这种架构,业务分析师只需在 Headless BI 平台上定义指标和标签,而无需关心底层数据源的具体实现。

在业务迁移过程中,业务团队通过 SuperSonic Headless BI 进行。利用转换工具将 DSL 转换为 Elasticsearch SQL 查询,只需切换已定义指标和标签所对应的数据源即可。由于 Headless BI 屏蔽了底层不同数据存储和分析引擎的差异,业务方能够实现无感知的迁移。

业务无感迁移方案.png

Headless BI 架构不仅实现了数据源的无缝迁移,还大大简化了数据管理和查询的复杂性。SuperSonic 将 Chat BI 与 Headless BI 融合,使用户能够实现统一的数据治理,并通过自然语言进行数据分析。经过腾讯音乐内容库的自主研发和实际应用,SuperSonic 平台现已开源,欢迎感兴趣的同仁使用与共同建设。(项目地址

结束语

借助 Doris 替代 Elasticsearch 集群,腾讯音乐内容库统一了搜索和分析引擎。基于倒排索引和全文检索的能力,支持复杂的自定义标签计算,满足秒级响应需求。此外,写入性能提升了 4 倍,存储空间减少了 72%,使用成本节省达 80%。

未来,腾讯音乐内容库将与 Apache Doris 深度合作,探索更多特性在场景应用中的可能性,包括引入 3.0 版本的存算分离,以进一步降低成本。

相关文章:#腾讯音乐案例#Elasticsearch 到 Apache Doris 案例#日志场景案例

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
23天前
|
存储 消息中间件 分布式计算
Cisco WebEx 数据平台:统一 Trino、Pinot、Iceberg 及 Kyuubi,探索 Apache Doris 在 Cisco 的改造实践
Cisco WebEx 早期数据平台采用了多系统架构(包括 Trino、Pinot、Iceberg 、 Kyuubi 等),面临架构复杂、数据冗余存储、运维困难、资源利用率低、数据时效性差等问题。因此,引入 Apache Doris 替换了 Trino、Pinot 、 Iceberg 及 Kyuubi 技术栈,依赖于 Doris 的实时数据湖能力及高性能 OLAP 分析能力,统一数据湖仓及查询分析引擎,显著提升了查询性能及系统稳定性,同时实现资源成本降低 30%。
Cisco WebEx 数据平台:统一 Trino、Pinot、Iceberg 及 Kyuubi,探索 Apache Doris 在 Cisco 的改造实践
|
13天前
|
SQL 存储 Apache
Apache Doris 3.0.3 版本正式发布
亲爱的社区小伙伴们,Apache Doris 3.0.3 版本已于 2024 年 12 月 02 日正式发布。该版本进一步提升了系统的性能及稳定性,欢迎大家下载体验。
|
1月前
|
存储 SQL Apache
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
Apache Doris 是一个基于 MPP 架构的高性能实时分析数据库,以其极高的速度和易用性著称。它支持高并发点查询和复杂分析场景,适用于报表分析、即席查询、数据仓库和数据湖查询加速等。最新发布的 2.0.2 版本在性能、稳定性和多租户支持方面有显著提升。社区活跃,已广泛应用于电商、广告、用户行为分析等领域。
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
|
1月前
|
SQL 存储 数据处理
兼顾高性能与低成本,浅析 Apache Doris 异步物化视图原理及典型场景
Apache Doris 物化视图进行了支持。**早期版本中,Doris 支持同步物化视图;从 2.1 版本开始,正式引入异步物化视图,[并在 3.0 版本中完善了这一功能](https://www.selectdb.com/blog/1058)。**
|
1月前
|
SQL 存储 Java
Apache Doris 2.1.7 版本正式发布
亲爱的社区小伙伴们,**Apache Doris 2.1.7 版本已于 2024 年 11 月 10 日正式发布。**2.1.7 版本持续升级改进,同时在湖仓一体、异步物化视图、半结构化数据管理、查询优化器、执行引擎、存储管理、以及权限管理等方面完成了若干修复。欢迎大家下载使用。
|
1月前
|
监控 Cloud Native BI
8+ 典型分析场景,25+ 标杆案例,Apache Doris 和 SelectDB 精选案例集(2024版)电子版上线
飞轮科技正式推出 Apache Doris 和 SelectDB 精选案例集 ——《走向现代化的数据仓库(2024 版)》,汇聚了来自各行各业的成功案例与实践经验。该书以行业为划分标准,辅以使用场景标签,旨在为读者提供一个高度整合、全面涵盖、分类清晰且易于查阅的学习资源库。
|
1月前
|
SQL DataWorks 关系型数据库
阿里云 DataWorks 正式支持 SelectDB & Apache Doris 数据源,实现 MySQL 整库实时同步
阿里云数据库 SelectDB 版是阿里云与飞轮科技联合基于 Apache Doris 内核打造的现代化数据仓库,支持大规模实时数据上的极速查询分析。通过实时、统一、弹性、开放的核心能力,能够为企业提供高性价比、简单易用、安全稳定、低成本的实时大数据分析支持。SelectDB 具备世界领先的实时分析能力,能够实现秒级的数据实时导入与同步,在宽表、复杂多表关联、高并发点查等不同场景下,提供超越一众国际知名的同类产品的优秀性能,多次登顶 ClickBench 全球数据库分析性能排行榜。
|
1月前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
46 5
|
2月前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
217 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
3月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo

推荐镜像

更多
下一篇
DataWorks