C语言文件操作(2)

简介: 【10月更文挑战第2天】

【10月更文挑战第2天】

5.文件的顺序读写

顺序读写介绍image.png
除了最后两行的,其他的都是读和写文本信息

第一组:fputc 和fgetc

//fputc--写字符
int main()
{
    FILE* pf = fopen("test.txt", "r");
    if (pf == NULL)
    {
        perror("fopen");
        return 1;
    }

    //写文件
    /*fputc('a', pf);
    fputc('b', pf);
    fputc('c', pf);*/

    //循环写入
    for (int i = 'a'; i <= 'z'; i++)
    {
        fputc(i, pf);
    }

    //关闭文件
    fclose(pf);
    pf = NULL;
    return 0;
}
/*
* fputc--写字符
int fputs(int *character,FILE*stream);
第一个参数是要写的字符

*/
/*
fgetc---读取一个字符
int fgets(FILE*stream)
只有一个参数就是那个文件的流

读取失败就会返回EOF,
读取正常的话会返回对应字符的ASCII码值

EOF是enf of file
文件的结束标志
*/

int main()
{
    FILE* pf = fopen("test.txt", "r");
    if (pf == NULL)
    {
        perror("fopen");
        return 1;
    }
    //读文件
    //现在文件里面存放的是之前写入的26个字母
    int ch = fgetc(pf);
    printf("%c\n", ch);
    ch = fgetc(pf);
    printf("%c\n", ch);
    ch = fgetc(pf);
    printf("%c\n", ch);
//    //输出的就是a b c
//    //我们在一开始读文件的时候,光标指向的是a,读完a之后,光标就指向了a的后一位的字母
//    //文件的光标一直随着我们在读在变化
//
//    //关闭文件
    fclose(pf);
    pf = NULL;
    return 0;
}

fputc函数返回的是对应字符的ASCII码值,两个参数,第一个参数是要写的字符

第二个参数是文件对应的流,文件指针

fgetc读取字符,参数是对应的文件的指针

读取失败就会返回EOF,

读取正常的话会返回对应字符的ASCII码值

int main()
{
    FILE* pf = fopen("test.txt", "r");
    if (pf == NULL)
    {
        perror("fopen");
        return 1;
    }
    int ch=0;
    while ((ch = fgetc(pf)) != EOF)//只要返回值不是EOF我们一直进行读取
    {
        printf("%c ", ch);
    }
    //那么这个输出的就是26个字母
    return 0;
}
int main()
{
    int ch=fgetc(stdin);//从键盘(标准输入流)上读取
    fputc(ch, stdout);//将字符输出(写)到屏幕(标准输出流)
    return 0;
}

从键盘上输入,在屏幕上输出

第二组:fputs和fgets

fputs:

int fputs(const charstr,FILEstream)

第一个参数是一个字符指针,指向了一个字符串,第二个是一个文件指针

返回类型是int

int main()
{
    //1.打开文件
    FILE* pf = fopen("hu.txt", "w");
    if (pf == NULL)//判断打开是否成功
    {
        perror("fopen");
        return 1;
    }
    //2.写文件
    fputs("I am a student", pf);//传过去的是字符串首元素的地址
    int ret=fputs("are you ok?", pf);
    //这两个输入的字符串在一行上面
    printf("%d", ret);//返回值是0,说明成功了,不是负数
    //3.关闭文件
    fclose(pf);
    pf = NULL;
    return 0;
}

//如果fputs输入成功的话,返回的就是一个非负整数

//失败的话,函数会返回EOF

如果fputs输入成功的话,返回的就是一个非负整数

失败的话,函数会返回EOF

fgets:

charfgets(char str,int nmu,FILE*stream)

第一个参数就是一个指针,指向复制到读取字符串的字符数组的指针

第二个参数num 是这个字符串能拷贝多少个字符


//fgets--读文件
int main()
{
    //1.打开文件
    FILE* pf = fopen("hu.txt", "r");
    if (pf == NULL)//判断打开是否成功
    {
        perror("fopen");
        return 1;
    }
    //2.读文件
    char arr[20] = { 0 };//将要读的文件放到这个数组内,相当于拷贝到这个数组内
    fgets(arr,20,pf);
    printf("%s", arr);
    //将读到的数据放到arr里面
//但是这里的arr并不是合适的,I am a studentare y我们还有些数据并没有读到
 //读取到的字符末尾还有一个'\0',总共下来就是20个字符了,真实读到的只有19个   

 //3.关闭文件
    fclose(pf);
    pf = NULL;
    return 0;
}
//从流中读取字符串,将字符串赋值拷贝在字符串数组中,最多读num-1个字符

//如果遇到换行的话,我们会直接停下来的,那么我们会读取\n。\n后面还是要读取\0的

fgets在使用的时候,我们要先创创建一个字符串数组,这个数组会存储我们读到的数据的

num就是我们读取的数据个数,但是因为读取到的还有一个\0,所以我们实际读到的仅仅只有num-1个字符

//在键盘上读,输出在屏幕上
int main()
{
    char arr[20] = { 0 };//存储我们读到的数据
    fgets(arr, 20, stdin);//stdin是标准输入流
    fputs(arr, stdout);//stdout是标准输出流
    return 0;
}

fgets如果读取成功的话,那么会返回str--目标空间的起始地址,接不接收无所谓的

但是读取失败的话会返回一个空指针的

第三组:fscanf和fprintf

fprintf:

int fprintf(FILEstream,const char format,....)

第三个参数就是可变参数列表

而printf的参数没有第一个,因为printf默认操作的就是stdout

fprintf可以适用于所有的操作流,可以适用于文件流,也可以适用于标准输出流

fprintf将数据写到文件内

struct S
{
    char name[20] ;
    int age ;
    float score ;
};
int main()
{

    struct S s = { "lisi",18,88.5f };
    //1.打开文件
    FILE* pf = fopen("hu.txt", "w");
    if (pf == NULL)
    {
        perror("fopen");
        return 1;
    }
    //2.写文件
    /*fprintf()*/
    fprintf(pf,"%s %d %f", s.name,s.age,s.score);//在前面加上文件指针,将后面所指的数据写到文件内
    //printf("%s %d %f", name, age, score);
    // 如果写入是结构体的数据也是可以的
    // 
    // 将s里面的数据写到文件里面
    //3.关闭文件
    fclose(pf);
    pf = NULL;
    return 0;
}

fscanf将文件读出来

fscanf:

int fscanf(FILEstream,const char format,....)

scanf和fscanf的差异也仅仅只是缺失文件指针

struct S
{
    char name[20];
    int age;
    float score;
};

int main()
{
    struct S s = { 0 };

    //1.打开文件
    FILE* pf = fopen("hu.txt", "r");
    if (pf == NULL)
    {
        perror("fopen");
        return 1;
    }
    //2.读文件
    //scanf("%s %d %f",&name,&age,&score)
    //从文件中读取信息,将读取的信息存放在s的各个成员中
    fscanf(pf, "%s %d %f", s.name, &(s.age), &(s.score));//数组名就是地址,不用加取地址符号
    //打印在屏幕上
    //printf("%s %d %f", s.name, s.age, s.score);
    fprintf(stdout,"%s %d %f", s.name, s.age, s.score);//默认输出流
    //3.关闭文件
    fclose(pf);
    pf = NULL;
    return 0;
}

fscanf将文件内的数据拷贝存在结构体中

对比一组函数,介绍sscanf和sprintf的用法


scanf/fscanf/sscanf

printf/fprintf/sprintf

scanf/printf 针对标准输入流(stdin)/标准输出流 (stdout) /格式化输入/输出函数

fscanf/fprintf 针对所有输入流(stdin)/输出流(stdout) /格式化输入/输出函数

第一种只能在键盘上输入和输出

第二种可以在文件和键盘上输入和输出

那么sprintf和sscanf有什么作用呢?

sprintf

int sprintf(char str,const char format,...)

sprintf作用就是将格式化的数据输入到指针str所指向的空间(字符串中)

可以理解为将格式化的数据转换为字符串

struct S
{
    char name[20];
    int age;
    float score;
};


int main()
{
    char arr[125] = { 0 };
    struct S s = { "lisi",18,98.5f };
    sprintf(arr, "%s %d %f", s.name, s.age, s.score);
    //将后面的数据转换为字符串存在arr中
    printf("%s", arr);//将数据以字符串形式打印出来
    return 0;
}

/*
sprintf可以理解为将数据转换为字符串,然后存储在指定的字符数组中
*/

ascanf的作用就和sprintf作用相反

sprintf的作用是将数据以字符串的形式存储在数组内

那么sscanf就是将数组中的这些已经转化为字符串的格式化数据提取出来

sscanf

int sscanf(const char s,const char format , ....)

struct s
{
    char name[20];
    int age;
    float score;
};


int main()
{
    char arr[125] = { 0 };
    struct s s = { "lisi",18,98.5f };

    //临时变量
    struct s tmp = { 0 };
    //将s中的各个数据转换成字符串放在arr中
    sprintf(arr, "%s %d %f", s.name, s.age, s.score);

    //从字符串arr中提取格式化的数据,存放在tmp中
    sscanf(arr,"%s %d %f", tmp.name, &(tmp.age), &(tmp.score));//name 是字符串首元素的地址

    printf("%s %d %f", tmp.name, tmp.age, tmp.score);
    return 0;
}

从字符串中提取格式化的数据,将字符串转化为格式化数据

总结:sprintf:将格式化的数据转换为字符串

sscanf:将字符串转化成格式化的数据

第五组:fread和fwrite

fwrite

size_t fwrite( const void ptr ,size_t size,size_t count, FILE**stream)

有四个参数

将ptr指向的这块空间里面的count个大小为size的元素写到stream所指向的文件里

fread

size_t fread( const void ptr ,size_t size,size_t count, FILE**stream)

两个函数的参数是一模一样的

那么fread的作用就是把stream里面的count个大小为size的元素写到ptr所指向的空间

从文件stream中读取count个大小为size个字节的数据,存放在ptr指向的空间中


//struct S
//{
//    char name[20];
//    int age;
//    float score;
//};
//
//int main()
//{
//    struct S s = { "lisi",18,98.6f };
//    //将这些数据以二进制的形式写到文件中
//
//    //打开文件
//    FILE* pf = fopen("test.txt", "wb");//b就是二进制的形式,这里的wb就是二进制的写
//    
//    //判断文件打开成功没?
//    if (pf == NULL)
//    {
//        perror("fopen");
//        return 1;
//    }
//     //写文件
//    fwrite(&s, sizeof(struct S), 1, pf);//写的数据来自s,我们要提供地址
//    //这里只有1个结构体的数据,那么我们写1,写到pf所指向的文件里面去
//        
//        //关闭文件
//    fclose(pf);
//    pf = NULL;
//    return 0;
//}
//这里我们已经将s中的数据以二进制的形式写到文件中去了

//那么下面的代码我们就进行解读
struct S
{
    char name[20];
    int age;
    float score;
};

int main()
{
    struct S s = { 0 };
    //读取二进制的数据到文件中

    //打开文件
    FILE* pf = fopen("test.txt", "rb");

    //判断文件打开成功没?
    if (pf == NULL)
    {
        perror("fopen");
        return 1;
    }
    //读取文件
    fread(&s, sizeof(struct S), 1, pf);
    //第一个参数是我们读完存放信息的地址
    //第二个参数是一个元素的大小,
    // 第三个元素是元素的个数 
    // pf就是我们要进行读的文件

    printf("%s %d %f", s.name, s.age, s.score);
        //关闭文件
    fclose(pf);
    pf = NULL;
    return 0;
}

这两个函数的返回值都是size_t 类型的

成功读取几个就返回

假设我们在用fread的时候,我们从文件中读取5个大小为size的数据放到ptr里面去,但是这个文件只有三个,读不到5个

那么我们这个函数就会返回我们实际读到数据的真实个数

文件的随机读写

想在哪里读就在哪里读,想在哪里写就在哪里写

文件的随机读写要确定我们这个文件里面写进去了很多信息

我们要根据我们的需要,将文件指针的指针(文件内容的光标)位置进行调整

fseek的使用

fseek

int fseek(FILE* stream,long int offest,int origin)

第一个参数是文件指针,第二个参数是偏移量 ,第三个参数是起始位置

从第二个参数我们能回想起之前学的offsetof---计算结构体成员相较于起始位置的偏移量

我们一定要知道偏移量和起始位置,我们才能定位这个文件指针(光标)

对于第三个参数,我们有三种选项

1.SEEK_SET:文件的起始位置

2.SEEK_CUR:文件指针(光标)当前的位置

3.SEEK_END:文件的末尾

int main()
{

    //读取二进制的数据到文件中

    //打开文件
    FILE* pf = fopen("test.txt", "r");

    //判断文件打开成功没?
    if (pf == NULL)
    {
        perror("fopen");
        return 1;
    }
    //读取文件,fgetc读取字符,返回被读字符的ASCII码值
    int ch = 0;
    ch=fgetc(pf);
    printf("%c\n", ch);
    //最开始,光标指向的是a,读完a之后,光标就会往后跳 
    ch = fgetc(pf);
    printf("%c\n", ch);//这里打印出来的就是b,打印完b,光标就指向了c


    //按照常规的话,下面的代码中的光标就指向了c,但是我们想直接读e,我们该做什么呢?
    //所以我们现在要重新定位文件指针,将文件指针的(光标)指向e的位置

    //fseek(pf, 4, SEEK_SET);//从文件起始位置偏移4下就能到e的位置了

    //fseek(pf, 2, SEEK_CUR);//因为上面已经进行了b的打印了,那么光标就指向了c的位置,
    //那么我们从当前位置进行光标的偏移,偏移两下光标就指向了e

    fseek(pf, -2, SEEK_END);
    //最后的位置就是f后面,光标指向了f的后面,那么这个光标前进两个指向的就是e了

    ch = fgetc(pf);
    printf("%c\n", ch);

    //关闭文件
    fclose(pf);
    pf = NULL;
    return 0;
}

向后偏移的话偏移量就是正数,向前的话偏移量就是负数

ftell的使用

ftell

long int ftell(FILE*stream)

返回文件指针相对于起始位置的偏移量

int main()
{

    //读取二进制的数据到文件中

    //打开文件
    FILE* pf = fopen("test.txt", "r");

    //判断文件打开成功没?
    if (pf == NULL)
    {
        perror("fopen");
        return 1;
    }
    //读取文件,fgetc读取字符,返回被读字符的ASCII码值
    int ch = 0;
    ch = fgetc(pf);
    printf("%c\n", ch);//a
    //最开始,光标指向的是a,读完a之后,光标就会往后跳 
    ch = fgetc(pf);//b
    printf("%c\n", ch);//这里打印出来的就是b,打印完b,光标就指向了c



    fseek(pf, -2, SEEK_END);
    //我们从文件的末尾进行访问,这是一个字符串,隐藏着一个'\0',所以我们要偏移两下才能到e

    ch = fgetc(pf);
    printf("%c\n", ch);//e

    //读完e我们想知道当前位置相较于起始位置的偏移量
    printf("%d", ftell(pf));//5
    //为什么是5呢?
    //因为上面我们刚读完e了,光标指向了f,那么这个位置距离起始位置的距离就是5了
    //最开始的起始位置在a的前面
    //关闭文件
    fclose(pf);
    pf = NULL;
    return 0;
}

rewind的使用

让文件指针位置回到文件的起始位置

void rewind(FILE*stream)

int main()
{

    //读取二进制的数据到文件中

    //打开文件
    FILE* pf = fopen("test.txt", "r");

    //判断文件打开成功没?
    if (pf == NULL)
    {
        perror("fopen");
        return 1;
    }
    //读取文件,fgetc读取字符,返回被读字符的ASCII码值
    int ch = 0;
    ch = fgetc(pf);
    printf("%c\n", ch);//a
    //最开始,光标指向的是a,读完a之后,光标就会往后跳 
    ch = fgetc(pf);//b
    printf("%c\n", ch);//这里打印出来的就是b,打印完b,光标就指向了c



    fseek(pf, -2, SEEK_END);
    //我们从文件的末尾进行访问,这是一个字符串,隐藏着一个'\0',所以我们要偏移两下才能到e

    ch = fgetc(pf);
    printf("%c\n", ch);//e

    //让文件指针回归到最初的位置
    //将文件指针重新定位到文件起始位置
    rewind(pf);
    ch = fgetc(pf);
    printf("%c\n", ch);
    //那么这一次的打印就是a了
    fclose(pf);
    pf = NULL;
    return 0;
}

文件的读取结束的判定

被错误使⽤的 feof

因为eof是文件结束的标志

以为feof函数是用来判断文件是否结束的,但其实不是的

牢记:在⽂件读取过程中,不能⽤feof函数的返回值直接来判断⽂件的是否结束。

feof 的作⽤是:当⽂件读取结束的时候,判断是读取结束的原因是否是:遇到⽂件尾结束。

在文件的读取过程中,有可能读取文件结束

结束的原因:1.遇到文件末尾

2.遇到错误了

,是判断结束的原因的

  1. ⽂本⽂件读取是否结束,判断返回值是否为 EOF ( fgetc ),或者 NULL ( fgets )

例如:

• fgetc 判断是否为 EOF .

• fgets 判断返回值是否为 NULL .

  1. ⼆进制⽂件的读取结束判断,

判断返回值是否⼩于实际要读的个数

例如:

• fread判断返回值是否⼩于实际要读的个数

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
    int c; // 注意:int,⾮char,要求处理EOF
    FILE* fp = fopen("test.txt", "r");
    if (!fp)//判断fp是不是空指针
    {//如果是空指针的话,!为真,那么打印错误
        perror("File opening failed");
        return EXIT_FAILURE;
    }
    //fgetc 当读取失败的时候或者遇到⽂件结束的时候,都会返回EOF
    while ((c = fgetc(fp)) != EOF) // 标准C I/O读取⽂件循环
    {
        putchar(c);
    }
    //这个循环结束了,那么下面就是我们进行探讨读取结束的原因
    //判断是什么原因结束的
    if (ferror(fp))//是不是遇到错误而结束的
    {
        puts("I/O error when reading");
    }
    else if (feof(fp))//是不是遇到结尾结束的
    {
        puts("End of file reached successfully");
    }
    fclose(fp);
    fp = NULL;
    return 0;
}
#include <stdio.h>
enum { SIZE = 5 };//枚举类型定义一个size=5
int main(void)
{
    double a[SIZE] = { 1.,2.,3.,4.,5. };
    FILE* fp = fopen("test.bin", "wb"); // 打开写文件。必须⽤⼆进制模式
    fwrite(a, sizeof * a, SIZE, fp); // 写 double 的数组
    //a是数组名,首元素的地址,那么*a就是首元素,那么sizeof*a计算的就是每个元素的大小
    //将a中的数据以二进制的形式写到fp所指向的文件里面去

    fclose(fp);//关闭文件

    double b[SIZE];
    fp = fopen("test.bin", "rb");//打开读文件,二进制形式rb
    size_t ret_code = fread(b, sizeof * b, SIZE, fp); // 读 double 的数组
    //code是fread是实际读的个数,将fp中的数据以格式化数据的形式读到b中
    if (ret_code == SIZE)//读取的个数等于size的话,就是正常读取
    {
        puts("Array read successfully, contents: ");
        //对数组元素进行打印
        for (int n = 0; n < SIZE; ++n)
            printf("%f ", b[n]);
        putchar('\n');
    }
    else { // error handling
        if (feof(fp))//是不是读取的时候遇到了文件末尾而结束的
            printf("Error reading test.bin: unexpected end of file\n");
        else if (ferror(fp))//是不是遇到其他错误而结束的
        {
            perror("Error reading test.bin");
        }
    }
    fclose(fp);
}
//拷贝文件
//将test1.txt拷贝到test2.txt
int main()
{
    //打开文件
    FILE*pfread=fopen("test1.txt", "r");//这个文件我们是用来读的
    if (pfread == NULL)//打开失败的情况
    {
        perror("fopen\n");
        return 1;
    }
    FILE* pfwrite = fopen("test2.txt", "w");//写文件
    if (pfwrite == NULL)//打开失败的情况
    {
        perror("fopen\n");
        fclose(pfread);//第二个文件都打开失败了,我们就直接将第一个文件关掉
        return 1;
    }

    //读写文件
    int ch = 0;
    //读pfread所指向的文件,将文件内的数据通过ch写到pfwrite里面

    while ((ch = fgetc(pfread)) != EOF)//不等于EOF就说明读取正常
    {
        fputc(ch, pfwrite);//fputc的第一个参数是要写的字符,第二个是文件指针
    }
    //当返回值是EOF的时候就结束了
    //关闭文件
    fclose(pfread);
    pfread = NULL;

    fclose(pfwrite);
    pfwrite = NULL;
    return 0;
}
/*我们在while循环中,先用ch = fgetc(pfread) != EOF,
* fgetc的返回值就是对应字符的ASCII码值
* 那么我们先读pfread里面的每个字符,然后在每层循环为ch附上每个字符的ASCII码值
* 在循环内,fputc第一个参数就是要写的字符数据,第二个参数就是所指向的文件指针,
* ch已经被赋上值了,那么我们就直接利用fputc将字符数据写到prwrite所指向的文件中
* 
* 
* 
*/
int main()
{
    //打开文件
    FILE* pf = fopen("test.txt", "r");//这个文件我们是用来读的
    if (pf == NULL)//打开失败的情况
    {
        perror("fopen\n");
        return 1;
    }


    //读写文件
    //int ch = 0;
    //ch = fgetc(pf);

    //int reet = feof(pf);//检测文件末尾
    //printf("%d", reet);//打印出来的是0,如果不是结尾结束的话,那么就是不正常的
    int ch = 0;
    while ((ch = fgetc(pf)) != EOF)
    {
        printf("%c ", ch);//将字符依次打印出来
    }
    int reet = feof(pf);
    printf("%d", reet);//那么这里打印出来的就是1了

    reet = ferror(pf);
    printf("%d", reet);//输出的结果是0,因为此时已经是文件末尾了,并没有出现错误的情况
    //关闭文件

    return 0;
}
//如果这个是正常结束的话,到文件末尾的话,对于feof(pf)的话,返回值就是非0的数字
//如果不是结尾结束的话,那么返回的就是一个0

//w是写,r是读

对于feof来说的话,如果这个是正常结束的话,到文件末尾的话,对于feof(pf)的话,返回值就是非0的数字

如果不是结尾结束的话,那么返回的就是一个0

对于ferror来说的话,如果不是其他的错误信息导致停止话,就是返回的是0,

如果是什么错误信息导致的,那么这个返回的就是非0数字

文件缓冲区

ANSIC 标准采⽤“缓冲⽂件系统” 处理的数据⽂件的,所谓缓冲⽂件系统是指系统⾃动地在内存中为

程序中每⼀个正在使⽤的⽂件开辟⼀块“⽂件缓冲区”。从内存向磁盘输出数据会先送到内存中的缓

冲区,装满缓冲区后才⼀起送到磁盘上。如果从磁盘向计算机读⼊数据,则从磁盘⽂件中读取数据输

⼊到内存缓冲区(充满缓冲区),然后再从缓冲区逐个地将数据送到程序数据区(程序变量等)。缓

冲区的⼤⼩根据C编译系统决定的

image.png

#include <stdio.h>
#include <windows.h>
//VS2022 WIN11环境测试
int main()
{
    //打开文件
    FILE* pf = fopen("test.txt", "w");
    //写文件,将这个一个字符串放到文件内
    //先将abcdef放到缓冲区内
    fputs("abcdef", pf);//先将代码放在输出缓冲区
    printf("睡眠10秒-已经写数据了,打开test.txt⽂件,发现⽂件没有内容\n");
    Sleep(10000);//10000毫秒就是10秒
    printf("刷新缓冲区\n");
    fflush(pf);//刷新缓冲区时,才将输出缓冲区的数据写到⽂件(磁盘)
    //注:fflush 在⾼版本的VS上不能使⽤了
    printf("再睡眠10秒-此时,再次打开test.txt⽂件,⽂件有内容了\n");
    Sleep(10000);
    fclose(pf);
    //注:fclose在关闭⽂件的时候,也会刷新缓冲区
    pf = NULL;
    return 0;
}

这⾥可以得出⼀个结论:

因为有缓冲区的存在,C语⾔在操作⽂件的时候,需要做刷新缓冲区或者在⽂件操作结束的时候关闭⽂件。

如果不做,可能导致读写⽂件的问题

相关文章
|
1月前
|
存储 程序员 C语言
【C语言】文件操作函数详解
C语言提供了一组标准库函数来处理文件操作,这些函数定义在 `<stdio.h>` 头文件中。文件操作包括文件的打开、读写、关闭以及文件属性的查询等。以下是常用文件操作函数的详细讲解,包括函数原型、参数说明、返回值说明、示例代码和表格汇总。
51 9
|
1月前
|
存储 数据管理 C语言
C 语言中的文件操作:数据持久化的关键桥梁
C语言中的文件操作是实现数据持久化的重要手段,通过 fopen、fclose、fread、fwrite 等函数,可以实现对文件的创建、读写和关闭,构建程序与外部数据存储之间的桥梁。
|
2月前
|
算法 C语言
C语言中的文件操作技巧,涵盖文件的打开与关闭、读取与写入、文件指针移动及注意事项
本文深入讲解了C语言中的文件操作技巧,涵盖文件的打开与关闭、读取与写入、文件指针移动及注意事项,通过实例演示了文件操作的基本流程,帮助读者掌握这一重要技能,提升程序开发能力。
129 3
|
2月前
|
存储 C语言
【c语言】玩转文件操作
本文介绍了C语言中文件操作的基础知识,包括文件的打开和关闭、文件的顺序读写、文件的随机读写以及文件读取结束的判定。详细讲解了`fopen`、`fclose`、`fseek`、`ftell`、`rewind`等函数的使用方法,并通过示例代码展示了如何进行文件的读写操作。最后,还介绍了如何判断文件读取结束的原因,帮助读者更好地理解和应用文件操作技术。
52 2
|
4月前
|
C语言
C语言——文件操作
本文介绍了文件的基本操作,包括文件的打开、关闭、读取和写入。使用`fopen`函数以不同模式(如“r”、“w”等)打开文件,并通过`fclose`关闭。文章详细解释了如何利用`fputc`、`fputs`及`fprintf`进行格式化写入,同时介绍了`fgetc`、`fgets`和`fscanf`用于文件内容的读取。此外,还涵盖了二进制文件的读写方法以及如何通过`fseek`、`ftell`和`rewind`实现文件的随机访问。
60 1
C语言——文件操作
|
3月前
|
程序员 编译器 C语言
C语言底层知识------文件操作
本文详细介绍了文件操作的基本概念,包括文件的分类(程序文件和数据文件,其中着重于数据文件的文本文件和二进制文件),流的概念及其在C程序中的应用,以及标准输入输出流stdin、stdout和stderr的作用。作者通过示例展示了如何使用fopen、fclose和常见的读写函数如fgetc、fputc和fgets进行文件操作。
35 2
|
3月前
|
存储 缓存 编译器
文件操作——C语言
文件操作——C语言
|
3月前
|
存储 C语言
简述C语言文件操作
简述C语言文件操作
13 0
|
3月前
|
存储 文件存储 C语言
深入C语言:文件操作实现局外影响程序
深入C语言:文件操作实现局外影响程序
|
3月前
|
存储 程序员 编译器
C语言文件操作(1)
【10月更文挑战第1天】