红队渗投测试术语-课程笔记

简介: 红队渗投测试术语-课程笔记

image.png

image.png

Shell:泛指系统控制权或操作界面(CLI 或 GUI),通常 Exploit 漏动利用之后,首先要做的就是拿 shell(getshel!),以此进行进一步操作。

Shellcode:用于获取控制权或操作界面的公鸡载荷代码,通常采用二进制机器代码,shellcode也是 payload 的一种类型。

正反Shell :shell 需要捆绑到指定IP地址和端口号上面,这个动作就是 bindshell;由公鸡方主动连接到受害者,则为正向shel;由受害者主动连接到公鸡方,则为反向shell(reverse shell)。


相关文章
|
9月前
|
存储 数据可视化 测试技术
一个测试工程师的实战笔记:我是如何在Postman和Apipost之间做出选择的?
优秀的API测试工具应该具备: 分层设计:既有可视化操作,也开放代码层深度定制 场景感知:自动识别加密需求推荐处理方案 协议包容:不强迫开发者为了不同协议切换工具 数据主权:允许自主选择数据存储位置
256 7
|
机器学习/深度学习 JSON 算法
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-Seg模型进行图像分割的完整流程,包括图像分割的基础知识、YOLOv5-Seg模型的特点、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。通过实例代码,指导读者从自定义数据集开始,直至模型的测试验证,适合深度学习领域的研究者和开发者参考。
4861 3
实例分割笔记(一): 使用YOLOv5-Seg对图像进行分割检测完整版(从自定义数据集到测试验证的完整流程)
|
测试技术
自动化测试项目实战笔记(三):测试用户注册(验证码错误,成功,出现弹框时处理)
本文是关于自动化测试项目实战笔记,主要介绍了如何测试用户注册功能,包括验证码错误、注册成功以及弹框处理的测试步骤和代码实现。
415 2
自动化测试项目实战笔记(三):测试用户注册(验证码错误,成功,出现弹框时处理)
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
2855 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
人工智能 安全 Linux
网络空间安全之一个WH的超前沿全栈技术深入学习之路(4-2):渗透测试行业术语扫盲完结:就怕你学成黑客啦!)作者——LJS
网络空间安全之一个WH的超前沿全栈技术深入学习之路(4-2):渗透测试行业术语扫盲完结:就怕你学成黑客啦!)作者——LJS
|
安全 大数据 Linux
网络空间安全之一个WH的超前沿全栈技术深入学习之路(3-2):渗透测试行业术语扫盲)作者——LJS
网络空间安全之一个WH的超前沿全栈技术深入学习之路(3-2):渗透测试行业术语扫盲)作者——LJS
|
SQL 安全 网络协议
网络空间安全之一个WH的超前沿全栈技术深入学习之路(1-2):渗透测试行业术语扫盲)作者——LJS
网络空间安全之一个WH的超前沿全栈技术深入学习之路(1-2):渗透测试行业术语扫盲)作者——LJS
|
机器学习/深度学习 弹性计算 自然语言处理
前端大模型应用笔记(二):最新llama3.2小参数版本1B的古董机测试 - 支持128K上下文,表现优异,和移动端更配
llama3.1支持128K上下文,6万字+输入,适用于多种场景。模型能力超出预期,但处理中文时需加中英翻译。测试显示,其英文支持较好,中文则需改进。llama3.2 1B参数量小,适合移动端和资源受限环境,可在阿里云2vCPU和4G ECS上运行。
594 1
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
307 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
机器学习/深度学习 并行计算 数据可视化
目标分类笔记(二): 利用PaddleClas的框架来完成多标签分类任务(从数据准备到训练测试部署的完整流程)
这篇文章介绍了如何使用PaddleClas框架完成多标签分类任务,包括数据准备、环境搭建、模型训练、预测、评估等完整流程。
960 0
目标分类笔记(二): 利用PaddleClas的框架来完成多标签分类任务(从数据准备到训练测试部署的完整流程)